, Volume 251, Issue 3, pp 699–702 | Cite as

Extracellular vesicle-mediated transfer of membranous components from the highly malignant T24 urinary carcinoma cell line to the non-malignant RT4 urinary papilloma cell line

  • Eva Ogorevc
  • Samo Hudoklin
  • Peter Veranič
  • Veronika Kralj-IgličEmail author
Short Communication


This communication reports the first experimental evidence that in the bladder cancer model, membranous components labelled with the DiO dye and the cholera toxin subunit B can be transported from highly malignant (T24) to non-malignant (RT4) cells by extracellular vesicles. Taking into account the presence of stable membranous nanostructures found by scanning electron microscopy, we suggest a possible uptake mechanism in recipient cells through fusion with highly curved membranous regions.


Intercellular transfer Extracellular vesicles Exosomes Microvesicles DiO Cholera toxin 


Conflict of interest

The authors declare that they have no conflict of interest.


  1. Dahiya R, Boyle B, Goldberg BC, Yoon WH, Konety B, Chen K, Yen TS, Blumenfeld W, Narayan P (1992) Metastasis-associated alterations in phospholipids and fatty acids of human prostatic adenocarcinoma cell lines. Biochem Cell Biol 70:548–554PubMedCrossRefGoogle Scholar
  2. D’Asti E, Garnier D, Lee TH, Montermini L, Meehan B, Rak J (2012) Oncogenic extracellular vesicles in brain tumor progression. Front Physiol 3:294PubMedCentralPubMedGoogle Scholar
  3. Frey B, Gaipl US (2011) The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol 33:497–516PubMedCrossRefGoogle Scholar
  4. Kharaziha P, Ceder S, Li Q, Panaretakis T (2012) Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta 1826:103–111PubMedGoogle Scholar
  5. Kim CW, Lee HM, Lee TH, Kang C, Kleinman HK, Gho YS (2002) Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res 62:6312–6317PubMedGoogle Scholar
  6. Kralj-Iglič V (2012) Stability of membranous nanostructures: a possible key mechanism in cancer progression. Int J Nanomed 7:3579–3596CrossRefGoogle Scholar
  7. Mrówczyńska L, Salzer U, Iglič A, Hägerstrand H (2011) Curvature factor and membrane solubilisation, with particular reference to membrane rafts. Cell Biol Int 35:991–995PubMedCrossRefGoogle Scholar
  8. Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta 1785:182–206PubMedGoogle Scholar
  9. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099PubMedCrossRefGoogle Scholar
  10. Skočaj M, Bakrac B, Križaj I, Maček P, Anderluh G, Sepčič K (2013) The sensing of membrane microdomains based on pore-forming toxins. Curr Med Chem 20:491–501PubMedGoogle Scholar
  11. Van Blitterswijk WJ, De Veer G, Krol JH, Emmelot P (1982) Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Biochim Biophys Acta 688:495–504PubMedCrossRefGoogle Scholar
  12. Veranič P, Lokar M, Schutz GJ, Weghuber J, Wieser S, Hagerstrand H, Kralj-Iglič V, Iglič A (2008) Different types of cell-to-cell connections mediated by nanotubular structures. Biophys J 95:4416–4425PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Eva Ogorevc
    • 1
  • Samo Hudoklin
    • 2
  • Peter Veranič
    • 2
  • Veronika Kralj-Iglič
    • 3
    Email author
  1. 1.Laboratory of Biophysics, Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
  3. 3.Faculty of Health SciencesUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations