Skip to main content
Log in

Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The acidic environments in the vacuole and other acidic organelles are important for many cellular processes in eukaryotic cells. In this study, we comprehensively investigated the roles of organelle acidification in vacuolar protein localisation in Saccharomyces cerevisiae. After repressing the acidification of acidic compartments by treatment with concanamycin A, a specific inhibitor of vacuolar H+-ATPase (V-ATPase), we examined the localisation of GFP-fused proteins that were predicted to localise in the vacuolar lumen or on the vacuolar membrane. Of the 73 proteins examined, 19 changed their localisation to the cytoplasmic region. Localisation changes were evaluated quantitatively using the image processing programme CalMorph. The delocalised proteins included vacuolar hydrolases, V-ATPase subunits, transporters and enzymes for membrane biogenesis, as well as proteins required for protein transport. These results suggest that many alterations in the localisation of vacuolar proteins occur after loss of the acidification of acidic compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACs:

Acidic compartments

ALP:

Alkaline phosphatase

CCA:

Concanamycin A

CPS:

Carboxypeptidase S

CPY:

Carboxypeptidase Y

DIC:

Differential interference contrast

DMSO:

Dimethylsulfoxide

EUROSCARF:

European Saccharomyces cerevisiae archive for functional analysis

GO:

Gene ontology

EN:

Endosomal network

PrA:

Proteinase A

Quinacrine:

6-Chloro-9(4-diethylamino-1-methylbutylamino)-2-methoxyacridine

SGD:

Saccharomyces genome database

V-ATPases:

Vacuolar proton-translocating ATPases

References

  • Banta LM, Robinson JS, Klionsky DJ, Emr SD (1988) Organelle assembly in yeast: characterization of yeast mutants defective in vacuolar biogenesis and protein sorting. J Cell Biol 107(4):1369–1383

    Article  PubMed  CAS  Google Scholar 

  • Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744(3):438–454

    Article  PubMed  CAS  Google Scholar 

  • Bowman EJ, Graham LA, Stevens TH, Bowman BJ (2004) The bafilomycin/concanamycin binding site in subunit c of the V-ATPases from Neurospora crassa and Saccharomyces cerevisiae. J Biol Chem 279(32):33131–33138

    Article  PubMed  CAS  Google Scholar 

  • Diakov TT, Kane PM (2010) Regulation of vacuolar proton-translocating ATPase activity and assembly by extracellular pH. J Biol Chem. 285(31):23771–23778

    Google Scholar 

  • Dubouloz F, Deloche O, Wanke V, Cameroni E, De Virgilio C (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19(1):15–26

    Article  PubMed  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686–691

    Article  PubMed  CAS  Google Scholar 

  • Jin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS (2008) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P2 in yeast and mouse. EMBO J 27(24):3221–3234

    Google Scholar 

  • Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H+-ATPase. Microbiol Mol Biol Rev 70(1):177–191

    Article  PubMed  CAS  Google Scholar 

  • Kane PM, Parra KJ (2000) Assembly and regulation of the yeast vacuolar H(+)-ATPase. J Exp Biol 203(Pt 1):81–87

    PubMed  CAS  Google Scholar 

  • Kawasaki-Nishi S, Bowers K, Nishi T, Forgac M, Stevens TH (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411–47420

    Google Scholar 

  • Kihara A, Sakuraba H, Ikeda M, Denpoh A, Igarashi Y (2008) Membrane topology and essential amino acid residues of Phs1, a 3-hydroxyacyl-CoA dehydratase involved in very long-chain fatty acid elongation. J Biol Chem 283(17):11199–11209

    Article  PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (1989) Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase. EMBO J 8(8):2241–2250

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54(3):266–292

    PubMed  CAS  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793(4):650–663

    Article  PubMed  CAS  Google Scholar 

  • MacDonald C, Stringer DK, Piper RC (2012) Sna3 is an Rsp5 adaptor protein that relies on ubiquitination for its MVB sorting. Traffic 13(4):586–598

    Article  PubMed  CAS  Google Scholar 

  • Makuc J, Paiva S, Schauen M, Krämer R, André B, Casal M, Leão C, Boles E (2001) The putative monocarboxylate permeases of the yeast Saccharomyces cerevisiae do not transport monocarboxylic acids across the plasma membrane. Yeast 18(12):1131–1143

    Article  PubMed  CAS  Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064–14074

    Google Scholar 

  • Mellman I, Fuchs R, Helenius A (1986) Acidification of the endocytic and exocytic pathways. Annu Rev Biochem 55:663–700

    Article  PubMed  CAS  Google Scholar 

  • Mesecke N, Spang A, Deponte M, Herrmann JM (2008) A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol Biol Cell 19(6):2673–2680

    Article  PubMed  CAS  Google Scholar 

  • Michell RH, Dove SK (2009) A protein complex that regulates PtdIns(3,5)P2 levels. EMBO J 28(2):86–87

    Google Scholar 

  • Morano KA, Klionsky DJ (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107(Pt 10):2813–2824

    PubMed  CAS  Google Scholar 

  • Negishi T, Nogami S, Ohya Y (2009) Multidimensional quantification of subcellular morphology of Saccharomyces cerevisiae using CalMorph, the high-throughput image-processing program. J Biotechnol 141(3–4):109–117

    Article  PubMed  CAS  Google Scholar 

  • Ohya Y, Sese J, Yukawa M, Sano F, Nakatani Y, Saito TL, Saka A, Fukuda T, Ishihara S, Oka S, Suzuki G, Watanabe M, Hirata A, Ohtani M, Sawai H, Fraysse N, Latgé JP, François JM, Aebi M, Tanaka S, Muramatsu S, Araki H, Sonoike K, Nogami S, Morishita S (2005) High-dimensional and large-scale phenotyping of yeast mutants. Proc Natl Acad Sci U S A 102(52):19015–19020

    Article  PubMed  CAS  Google Scholar 

  • Palma M, Goffeau A, Spencer-Martins I, Baret PV (2007) A phylogenetic analysis of the sugar porters in hemiascomycetous yeasts. J Mol Microbiol Biotechnol 12(3–4):241–248

    Article  PubMed  CAS  Google Scholar 

  • Rue SM, Mattei S, Saksena S, Emr SD (2008) Novel Ist1-Did2 complex functions at a late step in multivesicular body sorting. Mol Biol Cell 19(2):475–484

    Article  PubMed  CAS  Google Scholar 

  • Schluter C, Lam KK, Brumm J, Wu BW, Saunders M, Stevens TH, Bryan J, Conibear E (2008) Global analysis of yeast endosomal transport identifies the vps55/68 sorting complex. Mol Biol Cell 19(4):1282–1294

    Article  PubMed  CAS  Google Scholar 

  • Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN, Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 14(9):966–976

    Google Scholar 

  • Umemoto N, Yoshihisa T, Hirata R, Anraku Y (1990) Roles of the VMA3 gene product, subunit c of the vacuolar membrane H(+)-ATPase on vacuolar acidification and protein transport. A study with VMA3-disrupted mutants of Saccharomyces cerevisiae. J Biol Chem 265(30):18447–18453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Shinsuke Ohnuki for development of CalMorphGFP (version 1.1) and construction of the database, and members of the Laboratory of Signal Transduction for fruitful discussions. This work was supported by the Hamaguchi Foundation for the Advancement of Biochemistry (K.S.), the NOVARTIS Foundation (Japan) for the Promotion of Science (K.S.) and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan (24121707 and 24657083 to K.S.; 21310127 and 24370002 to Y.O.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Ohya.

Additional information

Handling Editor: Tsuneyoshi Kuroiwa

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 80.2 kb)

Supplementary Fig. 1

(PDF 162 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, R., Suzuki, K. & Ohya, Y. Organelle acidification is important for localisation of vacuolar proteins in Saccharomyces cerevisiae . Protoplasma 250, 1283–1293 (2013). https://doi.org/10.1007/s00709-013-0510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0510-2

Keywords

Navigation