Skip to main content

Advertisement

Log in

Eduard Strasburger (1844–1912): founder of modern plant cell biology

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in “education through science.” He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ackers D, Hejnowicz Z, Sievers A (1994) Variation in velocity of cytoplasmic streaming and gravity effect in Characean internodal cells measured by laser-Doppler-velocimetry. Protoplasma 179:61–71

    Article  PubMed  CAS  Google Scholar 

  • Alt W (1987) Mathematical models in actin–myosin interaction. In: Wohlfarth-Bottermann KE (ed) Nature and function of cytoskeletal proteins in motility and transport. Fortschritte der Zoologie 34, pp 219–230

  • Baker K, Hepler PK, Jackson WT (1968) Microtubules and early stages of cell-plate formation in the endosperm of Haemanthus. J Cell Biol 38:437–446

    Article  Google Scholar 

  • Baluška F, Salaj J, Mathur J, Braun M, Jasper F, Šamaj J, Chua N-H, Barlow PW, Volkmann D (2000) Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev Biol 227:618–632

    Google Scholar 

  • Baluška F, Volkmann D, Menzel D, Barlow P (2012) Strasburger’s legacy to mitosis and cytokinesis and its relevance for the cell theory. Protoplasma. doi:10.1007/s00709-012-0404-8

  • Bannigan A, Lizotte-Waniewski M, Riley M, Baskin TI (2008) Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants. Cell Motil Cytoskeleton 65:1–11

    Article  PubMed  CAS  Google Scholar 

  • Baskin TI, Cande WZ (1990) The structure and function of the mitotic spindle in flowering plants. Annu Rev Plant Biol 41:277–315

    Article  Google Scholar 

  • Bresinsky A, Körner Ch, Kadereit JW, Neuhaus G, Sonnewald U (2008) Strasburger—Lehrbuch der Botanik. Begründet von E. Strasburger, Spektrum Akademischer Verlag, Heidelberg

  • Brown RC, Lemmon BE, Nguyen H (2003) Events during the first four rounds of mitosis establish three developmental domains in the syncytial endosperm of Arabidopsis thaliana. Protoplasma 222:167–174

    Article  PubMed  CAS  Google Scholar 

  • Chamberlain ChJ (1912) Eduard Strasburger. Bot Gaz 54:68–72

    Article  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Šamaj J, Friml J, Gadella TWJ Jr (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    Article  PubMed  CAS  Google Scholar 

  • Dhonukshe P, Šamaj J, Baluška F, Friml J (2007) A unifying new model of cytokinesis for the dividing plant and animal cells. BioEssays 29:371–381

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC, Ketelaar T (2009) Intracellular organization: a prerequisite for root hair elongation and cell wall deposition. Plant Cell Monogr 12:27–44

    Article  CAS  Google Scholar 

  • Fitting H (1937) Beitrage zur Physiologie der Protoplasmaströmung in den Blättern von Vallisneria spiralis. Ber deutsch Bot Ges 55:255–261

    CAS  Google Scholar 

  • Grolig F, Pierson ES (2000) Cytoplasmic streaming: from flow to track. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 165–190

    Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Holweg C, Nick P (2004) Arabidopsis myosin XI mutant is defective in organelle movement and polar auxin transport. PNAS 101:10488–10493

    Google Scholar 

  • Jarosch R (1960) Die dynamik im Characeen protoplasma. Phyton 15:43–66

    Google Scholar 

  • Kamiya N (1962) Protoplasmic streaming. Encyclop Plant Physiol 17–2:981–1035

    Google Scholar 

  • King SM (2002) Dyneins motor on in plants. Traffic 3:930–931

    Article  PubMed  CAS  Google Scholar 

  • Knoop V, Müller K (2009) Gene und Stammbäume. Ein Handbuch zur molekularen Phylogenetik. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Kollmann R, Schumacher W (1964) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen. V. Die Differenzierung der Siebzellen im Verlauf einer Vegetationsperiode. Planta 63:155–190

    Article  Google Scholar 

  • Lawrence CJ, Morris NR, MeagherRB DRK (2001) Dyneins have run their course in plant lineage. Traffic 2:362–363

    Article  PubMed  CAS  Google Scholar 

  • Liebe S, Menzel D (1995) Actomyosin-based motility of endoplasmic reticulum and chloroplasts in Vallisneria mesophyll cells. Biol Cell 85:207–222

    Article  PubMed  CAS  Google Scholar 

  • Liesche J, Martens HJ, Schulz A (2011) Symplasmic transport and phloem loading in gymnosperm leaves. Protoplasma 248:181–190

    Article  PubMed  CAS  Google Scholar 

  • Lord EM (2005) Adhesion and guidance in compatible pollination. J Exp Bot 54:47–54

    Article  Google Scholar 

  • Lord EM, Russell SD (2002) The mechanisms of pollination and fertilization in plants. Annu Rev Cell Dev Biol 18:81–105

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Ham B-K, Kim J-Y (2009) Plasmodesmata—bridging the gap between neighboring plant cells. Trends Cell Biol 19:495–500

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB, McKinney EC, Kandasamy MK (2000) The significance of diversity in the plant actin gene family. Studies in Arabidopsis. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 3–27

    Google Scholar 

  • Mine I, Menzel D, Okuda K (2008) Morphogenesis in giant-celled algae. Int Rev Cell Mol Biol 266:37–83

    Article  PubMed  CAS  Google Scholar 

  • Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38:63–67

    Article  PubMed  CAS  Google Scholar 

  • Okuda S, Tsutsui H, Shiin K, Sprunck S, Takeuchi K, Yui R et al (2009) Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 458:357–361

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Northcote DH (1966) Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristem. J Cell Sci 1:109–120

    PubMed  CAS  Google Scholar 

  • Pickett-Heaps JD, Gunning BE, Brown RC, Lemmon BE, Cleary AL (1999) The cytoplast concept in dividing plant cells: cytoplasmic domains and the evolution of spatially organized cell. Am J Bot 86:153–172

    Article  PubMed  CAS  Google Scholar 

  • Pollack GH (2001) Cells, gels and the engines of life. A new unifying approach to cell function. Ebner and Sons, Seattle

    Google Scholar 

  • Rasmussen CG, Humphries JA, Smith LG (2011) Determination of symmetric and asymmetric division planes in plant cells. Annu Rev Plant Biol 62:387–409

    Article  PubMed  CAS  Google Scholar 

  • Reichardt I, Stierhof Y-D, Mayer U, Richter S, Schwarz H, Schumacher K, Jürgens G (2007) Plant cytokinesis requires de novo secretory trafficking but not endocytosis. Current Biol 17:2047–2053

    Article  CAS  Google Scholar 

  • Reichelt S, Kendrick-Jones J (2000) Myosins. In: Staiger CJ, Baluška F, Volkmann D, Barlow PW (eds) Actin: a dynamic framework for multiple plant cell functions. Kluwer, Dordrecht, pp 29–44

    Google Scholar 

  • Ryu JH, Takagi S, Nagai R (1995) Stationary organization of the actin cytoskeleton in Vallisneria: the role of stable microfilaments at the end walls. J Cell Sci 108:1531–1539

    PubMed  CAS  Google Scholar 

  • Šamaj J, Read ND, Volkmann D, Menzel D, Baluška F (2005) The endocytic network in plants. Trends Cell Biol 15:425–433

    Article  PubMed  Google Scholar 

  • Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    Article  PubMed  Google Scholar 

  • Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells (= albuminous cells) in the secondary phloem of Pinus nigra var. austriaca (Hoess) Badoux. Protoplasma 88:31–49

    Article  Google Scholar 

  • Sawitzky H, Grolig F (1995) Phragmoplast of the green alga Spirogyra is functionally distinct from the higher plant phragmoplast. J Cell Biol 130:1359–1371

    Article  PubMed  CAS  Google Scholar 

  • Schlicht M, Šamajová O, Schachtschnabel D, Mancuso S, Menzel D, Boland W, Baluška F (2008) Dorenone blocks polarized tip-growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. Plant J 55:709–717

    Article  PubMed  CAS  Google Scholar 

  • Schreiber L (2010) Transport barriers made of cutin, suberin and associated waxes. Trends Plant Sci 15:546–553

    Google Scholar 

  • Shimmen T, Yokota E (2004) Cytoplasmic streaming in plants. Curr Opin Cell Biol 16:68–72

    Article  PubMed  CAS  Google Scholar 

  • Sievers A, Buchen B, Volkmann D, Hejnowicz Z (1991) Role of the cytoskeleton in gravity perception. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic, London, pp 169–182

    Google Scholar 

  • Sparks I (2011) Recent advances in understanding plant myosin function: life in the fast lane. Mol Plant 4:805–812

    Article  Google Scholar 

  • Strasburger E (1875) Über Zellbildung und Zelltheilung. Hermann Dabis, Jena

    Google Scholar 

  • Strasburger E (1876) Über Zellbildung und Zelltheilung, zweite verbesserte und vermehrte Auflage nebst Untersuchungen über Befruchtung. Hermann Dabis, Jena

    Google Scholar 

  • Strasburger E (1882) Über den Theilungsvorgang der Zellkerne und das Verhältniss der Kerntheilung zur Zelltheilung. Max Cohen & Sohn, Bonn

    Google Scholar 

  • Strasburger E (1884a) Das Botanische Practicum. Anleitung zum Selbststudium der mikroskopischen Botanik für Anfänger und Fortgeschrittnere. Gustav Fischer, Jena

    Google Scholar 

  • Strasburger E (1884b) Neue Untersuchungen über den Befruchtungsvorgang bei den Phanerogamen als Grundlage für eine Theorie der Zeugung. Gustav Fischer, Jena

    Google Scholar 

  • Strasburger E (1891) Ueber den Bau und die Verrichtung der Leitungsbahnen in den Pflanzen. Gustav Fischer, Jena

    Google Scholar 

  • Strasburger E (1904) Streifzüge an der Riviera, zweite gänzlich umgearbeitete Auflage mit 87 farbigen Abbildungen. Gustav Fischer, Jena

    Google Scholar 

  • Strasburger E (1913) Pflanzliche Zellen-und Gewebelehre. In: Von Wettstein R (ed) Zellen-und Gewebelehre, Morphologie und Entwicklunggeschichte. B.G. Teubner, Leipzig, pp 1–174

    Google Scholar 

  • Strasburger E, Noll F, Schenck H, Schimper AFW (1894) Lehrbuch der Botanik für Hochschulen. Gustav Fischer, Jena

    Google Scholar 

  • Takagi S, Nagai R (1983) Regulation of cytoplasmic streaming in Vallisneria mesophyll cells. J Cell Sci 62:385–405

    PubMed  CAS  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112:467–480

    Article  PubMed  CAS  Google Scholar 

  • Van Bel AJE (1993) Strategies of phloem loading. Annu Rev Plant Physiol Plant Mol Biol 44:253–281

    Article  Google Scholar 

  • Verchot-Lubicz J, Goldstein RE (2010) Cytoplasmic streaming enables the distribution of molecules and vesicles in large plant cells. Protoplasma 240:99–107

    Article  PubMed  Google Scholar 

  • Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Article  PubMed  CAS  Google Scholar 

  • Volkmann D, Baluška F (1999) Actin cytoskeleton in plants: from transport networks to signaling networks. Microsc Res Tech 47:135–154

    Article  PubMed  CAS  Google Scholar 

  • Weiler E, Nover L (2008) Allgemeine und molekulare Botanik. Begründet von Wilhelm Nultsch. Georg Thieme, Stuttgart

    Google Scholar 

  • Whaley WG, Mollenhauer HH (1963) The Golgi apparatus and cell plate formation—a postulate. J Cell Biol 17:216

    Article  PubMed  CAS  Google Scholar 

  • Wickstead B, Gull K (2007) Dyneins across eukaryotes: a comparative genomic analysis. Traffic 7:1708–1721

    Article  Google Scholar 

  • Zonia L (2010) Spatial and temporal integration of signalling networks regulating pollen tube growth. J Exp Bot 61:1939–1957

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This paper was presented as an invited lecture at the 5th Conference of the Polish Society of Experimental Plant Biology. It served as introduction to the session “E. Strasburger Day—Cellular Level” which was organized by Profs. Beata Zagórska-Marek (Wrocław University, Poland) and Przemysław Wojtaszek (Adam Mickiewicz University, Poznań, Poland).

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Volkmann.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkmann, D., Baluška, F. & Menzel, D. Eduard Strasburger (1844–1912): founder of modern plant cell biology. Protoplasma 249, 1163–1172 (2012). https://doi.org/10.1007/s00709-012-0406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-012-0406-6

Keywords

Navigation