Skip to main content

Probing and tracking organelles in living plant cells

An Erratum to this article was published on 04 February 2012

Abstract

Intracellular organelle movements and positioning play pivotal roles in enabling plants to proliferate life efficiently and to survive diverse environmental stresses. The elaborate dissection of organelle dynamics and their underlying mechanisms (e.g., the role of the cytoskeleton in organelle movements) largely depends on the advancement and efficiency of organelle tracking systems. Here, we provide an overview of some recently developed tools for labeling and tracking organelle dynamics in living plant cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arimura S, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci USA 101:7805–7808

    PubMed  CAS  Article  Google Scholar 

  2. Avisar D, Prokhnevsky AI, Makarova KS, Koonin EV, Dolja VV (2008) Myosin XI-K is required for rapid trafficking of Golgi stacks, peroxisomes and mitochondria in leaf cells of Nicotiana benthamiana. Plant Physiol 146:1098–1108

    PubMed  CAS  Article  Google Scholar 

  3. Bates M, Huang B, Zhuang XW (2008) Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr Opin Chem Biol 12:505–514

    PubMed  CAS  Article  Google Scholar 

  4. Bayle V, Nussaume L, Bhat RA (2008) Combination of novel green fluorescent protein mutant TSapphire and DsRed variant mOrange to set up a versatile in planta FRET-FLIM assay. Plant Physiol 148:51–60

    PubMed  CAS  Article  Google Scholar 

  5. Brown SC, Bolte S, Gaudin M, Pereira C, Marion J, Soler M-N, Satiat-Jeunemaitre B (2010) Exploring plant endomembrane dynamics using the photoconvertible protein Kaede. Plant J 63:696–711

    PubMed  CAS  Article  Google Scholar 

  6. Cappello G, Badoual M, Ott A, Prost J, Busoni L (2003) Kinesin motion in the absence of external forces characterized by interference total internal reflection microscopy. Phys Rev E Stat Nonlin Soft Matter Phys 68:021907

    PubMed  Article  Google Scholar 

  7. Carroll AD, Moyen C, Van Kesteren P, Tooke F, Battey NH, Brownlee C (1998) Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10:1267–1276

    PubMed  CAS  Google Scholar 

  8. Chudako DM, Lukyanov S, Lukyanov KA (2005) Fluorescent proteins as a toolkit for in vivo imaging. Trends Biotechnol 23:605–613

    Article  Google Scholar 

  9. Chuong SDX, Franceschi VR, Edwards GE (2006) The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell 18:2207–2223

    PubMed  CAS  Article  Google Scholar 

  10. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961–966

    CAS  Article  Google Scholar 

  11. Dhonukshe P, Laxalt AM, Goedhart J, Gadellaa TWJ, Munnik T (2003) Phospholipase D activation correlates with microtubule reorganization in living plant cells. Plant Cell 15:2666–2679

    PubMed  CAS  Article  Google Scholar 

  12. Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    PubMed  CAS  Article  Google Scholar 

  13. Doniwa Y, Arimura S, Tsutsumi N (2007) Mitochondria use actin filaments as rails for fast translocation in Arabidopsis and tobacco cells. Plant Biotechnol 24:441–447

    CAS  Article  Google Scholar 

  14. Estevezl JM, Somerville C (2006) FlAsH-based live-cell fluorescent imaging of synthetic peptides expressed in Arabidopsis and tobacco. Biotechniques 41:569–574

    Article  Google Scholar 

  15. Fitzgibbon J, Bell K, King E, Oparka K (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153:1453–1463

    Google Scholar 

  16. Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts. Plant J 52:185–195

    PubMed  CAS  Article  Google Scholar 

  17. Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    PubMed  CAS  Article  Google Scholar 

  18. Gutierrez R, Grossmann G, Frommer WB, Ehrhardt DW (2010) Opportunities to explore plant membrane organization with super-resolution microscopy. Plant Physiol 154:463–466

    PubMed  CAS  Article  Google Scholar 

  19. Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    PubMed  CAS  Article  Google Scholar 

  20. Hepler PK, Gunning BES (1998) Confocal fluorescence microscopy of plant cells. Protoplasma 201:121–157

    Article  Google Scholar 

  21. Jelinkova A, Malinska K, Simon S, Kleine-Vehn J, Parezova M, Pejchar P, Kubes M, Martinec J, Friml J, Zazimalova E, Petrasek J (2010) Probing plant membranes with FM dyes: tracking, dragging or blocking? Plant J 61:883–892

    PubMed  CAS  Article  Google Scholar 

  22. Jurgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    PubMed  Article  Google Scholar 

  23. Konopka CA, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196

    PubMed  CAS  Article  Google Scholar 

  24. Konopka CA, Backuesb SK, Bednarek SY (2008) Dynamics of Arabidopsis dynamin-related protein 1C and a clathrin light chain at the plasma membrane. Plant Cell 20:1363–1380

    PubMed  CAS  Article  Google Scholar 

  25. Langhorst MF, Genisyuerek S, Stuermer CA (2006) Accumulation of FlAsH/Lumio Green in active mitochondria can be reversed by beta-mercaptoethanol for specific staining of tetracysteine-tagged proteins. Histochem Cell Biol 125:743–747

    PubMed  CAS  Article  Google Scholar 

  26. Li XJ, Wang XH, Yang Y, Li RL, He QH, Fang XH, Luu D-T, Maurel C, Lin JX (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell

  27. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444–456

    PubMed  CAS  Article  Google Scholar 

  28. Lippincott-Schwartz J, Altan-Bonnet N, Patterson GH (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat Cell Biol, Suppl, pp S7–S14

    Google Scholar 

  29. Lu L, Lee Y-RJ, Pan R, Maloof JN, Liu B (2005) An internal motor kinesin is associated with the Golgi apparatus and plays a role in trichome morphogenesis in Arabidopsis. Mol Biol Cell 16:811–823

    PubMed  CAS  Article  Google Scholar 

  30. Lukyanov KA, Chudako DM, Lukyanov S, Verkhusha W (2005) Innovation: photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6:885–891

    PubMed  CAS  Article  Google Scholar 

  31. Mathur J, Mathur N, Hulskamp M (2002) Simultaneous visualization of peroxisomes and cytoskeletal elements reveals actin and not microtubule-based peroxisome motility in plants. Plant Physiol 128:1031–1045

    PubMed  CAS  Article  Google Scholar 

  32. Mathur J, Radhamony R, Sinclair AM, Donoso A, Dunn N, Roach E, Radford D, Mohaghegh M, Logan DC, Kokolic K, Mathur N. (2010) mEosFP-based green-to-red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587

    Google Scholar 

  33. Matsuoka S, Shibata T, Ueda M (2009) Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging. Biophys J 19:1115–1124

    Article  Google Scholar 

  34. Michard E, Dias P, Feijo JA (2008) Tobacco pollen tubes as cellular models for ion dynamics: improved spatial and temporal resolution of extracellular flux and free cytosolic concentration of calcium and photons using pHluorin and YC3.1 CaMeleon. Sex Plant Reprod 21:169–181

    CAS  Article  Google Scholar 

  35. Miyawaki A, Sawano A, Kogure T (2003) Lighting up cells: labelling proteins with fluorophores. Nat Cell Biol, Supp l, pp S1–S7

    Google Scholar 

  36. Moseyko N, Feldman LJ (2001) Expression of pH-sensitive green fluorescent protein in Arabidopsis thaliana. Plant Cell Environ 24:557–563

    PubMed  CAS  Article  Google Scholar 

  37. Nebenfuhr A, Gallagher LA, Dunahay TG, Frohlick JA, Mazurkiewicz AM, Meehl JB, Staehelin LA (1999) Stop-and-go movements of plant Golgi stacks are mediated by the acto-myosin system. Plant Physiol 121:1127–1142

    PubMed  CAS  Article  Google Scholar 

  38. Nebenführ A (2007) Organelle dynamics during cell division. In: Plant Cell Monogr (9) D.P.S. Verma and Z. Hong: Cell Division Control in Plants. Springer-Verlag Berlin Heidelberg 195–206

  39. Nelson BK, Cai X, A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    PubMed  CAS  Article  Google Scholar 

  40. Nick P, Han M, An G (2009) Auxin stimulates its own transport by actin reorganization. Plant Physiol 151:155–167

    PubMed  CAS  Article  Google Scholar 

  41. Parton RM, Parton SF, Watahiki MK, Trewavas AJ (2001) Dynamics of the apical vesicle accumulation and the rate of growth are related in individual pollen tubes. J Cell Sci 114:2685–2695

    PubMed  CAS  Google Scholar 

  42. Peremyslov VV, Prokhnevsky AI, Avisar D, Dolja VV (2008) Two class XI myosins function in organelle trafficking and root hair development in Arabidopsis thaliana. Plant Physiol 146:1109–1116

    PubMed  CAS  Article  Google Scholar 

  43. Ravindran S, Kim S, Martin R, Lord EM, Ozkan CS (2005) Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology 16:1–4

    CAS  Article  Google Scholar 

  44. Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N, Vale RD (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348

    Google Scholar 

  45. Richter S, Voß U, Jurgens G (2009) Post-Golgi traffic in plants. Traffic 10:819–828

    PubMed  CAS  Article  Google Scholar 

  46. Romagnoli S, Cai G, Faleri C, Yokota E, Shimmen T, Cresti M (2007) Microtubule- and actin filament-dependent motors are distributed on pollen tube mitochondria and contribute differently to their movement. Plant Cell Physiol 48:345–361

    PubMed  CAS  Article  Google Scholar 

  47. Runions J, Brach T, Kuhner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50

    PubMed  CAS  Article  Google Scholar 

  48. Ruthardt N, Gulde N, Spiegel H, Fischer R, Emans N (2005) Four-dimensional imaging of transvacuolar strand dynamics in tobacco BY-2 cells. Protoplasma 225:205–215

    PubMed  CAS  Article  Google Scholar 

  49. Ryan TA (2001) Presynaptic imaging techniques. Curr Opin Neurobiol 11:544–549

    PubMed  CAS  Article  Google Scholar 

  50. Šamaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    PubMed  Article  Google Scholar 

  51. Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    PubMed  CAS  Article  Google Scholar 

  52. Schaefer LH, Schuster D, Herz H (2001) Generalized approach for accelerated maximum likelihood based image restoration applied to three-dimensional fluorescence microscopy. J Microsc 204:99–107

    PubMed  CAS  Article  Google Scholar 

  53. Schneckenburger H (2005) Total internal reflection fluorescence microscopy: technical innovations and novel applications. Curr Opin Biotechnol 16:13–18

    PubMed  CAS  Article  Google Scholar 

  54. Schulte A, Lorenzen I, Böttcher M, Plieth C (2006) A novel fluorescent pH probe for expression in plants. Plant Methods 2:7

    PubMed  Article  Google Scholar 

  55. Solomon EB, Matthews KR (2005) Use of fluorescent microspheres as a tool to investigate bacterial interactions with growing plants. J Food Prot 68:870–873

    PubMed  Google Scholar 

  56. Solomon EB, Matthews KR (2006) Interaction of live and dead Escherichia coli O157:H7 and fluorescent microspheres with lettuce tissue suggests bacterial processes do not mediate adherence. Lett Appl Microbiol 42:88–93

    PubMed  CAS  Article  Google Scholar 

  57. Sparkes I, Runions J, Hawes C, Griffing L (2009) Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21:3937–3949

    PubMed  CAS  Article  Google Scholar 

  58. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86

    PubMed  CAS  Article  Google Scholar 

  59. Steyer JA, Almers W (2001) A real-time view of life within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2:268–275

    PubMed  CAS  Article  Google Scholar 

  60. Sund SE, Axelrod D (2000) Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching. Biophy J 79:1655–1669

    CAS  Article  Google Scholar 

  61. Sutter JU, Campanoni P, Tyrrell M, Blatt MR (2006) Selective mobility and sensitivity to SNAREs is exhibited by the Arabidopsis KAT1 K+ channel at the plasma membrane. Plant Cell 18:935–954

    PubMed  CAS  Article  Google Scholar 

  62. Tominaga M, Kojima H, Yokota E, Orii H, Nakamori R, Katayama E, Anson M, Shimmen T, Oiwa K (2003) Higher plant myosin XI moves processively on actin with 35 nm steps at high velocity. EMBO J 22:1263–1272

    PubMed  CAS  Article  Google Scholar 

  63. van Gestel K, Kohler RH, Verbelen JP (2002) Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot 53:659–667

    PubMed  Article  Google Scholar 

  64. Voigt B, Timmers AC, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur J Cell Biol 84:609–621

    Google Scholar 

  65. Wada M, Suetsugu N (2004) Plant organelle positioning. Curr Opin Plant Biol 7:626–631

    PubMed  CAS  Article  Google Scholar 

  66. Wan YL, Ash WM, Fan LS, Hao HQ, Kim MK, Lin JX (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7:27. doi:10.1186/1746-4811-7-27

    PubMed  CAS  Article  Google Scholar 

  67. Wang E, Babbey CM, Dunn KW (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218:148–159

    PubMed  CAS  Article  Google Scholar 

  68. Wang XH, Teng Y, Wang QL, Li XJ, Sheng XY, Zheng MZ, Šamaj J, Baluška F, Lin JX (2006) Imaging of dynamic secretory vesicles in living pollen tubes of Picea meyeri using evanescent wave microscopy. Plant Physiol 141:1591–1603

    PubMed  CAS  Article  Google Scholar 

  69. Wang Q, Chen B, Liu P, Zheng M, Wang Y, Cui S, Sun D, Fang X, Liu C, Lucas W, Lin J (2009) Calmodulin binds to extracellular sites on the plasma membrane of plant cells and elicits a rise in intracellular calcium concentration. J Biol Chem 284:12000–12007

    PubMed  CAS  Article  Google Scholar 

  70. Watanabe W, Shimada T, Matsunaga S, Kurihara D, Fukui K, Arimura S, Tsutsumi N, Isobe K, Itoh K (2007) Single-organelle tracking by two-photon conversion. Opt Express 15:2490–2498

    PubMed  Article  Google Scholar 

  71. Yu G, Liang J, He Z, Sun MX (2006) Quantum dot-mediated detection of γ-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731

    PubMed  CAS  Article  Google Scholar 

  72. Zheng MZ, Beck M, Müller J, Chen T, Wang XH, Wang F, Wang QL, Wang YH, Baluska F, Logan DC, Šamaj J, Lin JX (2009) Actin turnover is required for myosin-dependent mitochondrial movements in Arabidopsis root hairs. PLoS One 18:e5961

    Article  Google Scholar 

  73. Zhu YF, Wang YQ, Li RL, Song XF, Wang QL, Huang SJ, Jin JB, Liu CM, Lin JX (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (30730009, 31000092), Ministry of Agriculture of China (2008ZX08002-003, 2009ZX08009-011B and 2009ZX08009-095B), CAS/SAFEA International Partnership Program for Creative Research Teams (20090491019), and Ministry of Science and Technology of China (2011CB809103).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinxing Lin.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, T., Wang, X., von Wangenheim, D. et al. Probing and tracking organelles in living plant cells. Protoplasma 249, 157–167 (2012). https://doi.org/10.1007/s00709-011-0364-4

Download citation

Keywords

  • Organelle dynamics
  • Fluorescent labeling
  • Microscopy
  • Organelle movement
  • Tracking