Advertisement

Protoplasma

, Volume 249, Issue 4, pp 909–918 | Cite as

Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase

  • Manuela Eick
  • Christine StöhrEmail author
Review Article

Abstract

A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

Keywords

Nitrate reductase Plasma membrane Root Denitrification Nitric oxide NarH 

Abbreviations

PM

Plasma membrane

NR

Nitrate reductase

NI-NOR

Nitrite/NO reductase

Notes

Acknowledgment

We thank all former and current members of the Stöhr laboratory for excellent technical assistance. We also thank Dr. Dörte Becher and Martin Moche at the Institute of Microbial Physiology and Molecular Biology (University Greifswald) for the mass spectrometric analysis of the gel samples.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. Altschul SF, Wootton JC, Gertz EM, Agarwala R, Morgulis A, Schäffer AA, Yu Y-K (2005) Protein database searches using compositionally adjusted substitution matrices. FEBS J 272:5101–5109PubMedCrossRefGoogle Scholar
  2. Arnon DI (1937) Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen ion concentration, manganese, copper and oxygen supply. Soil Sci 44:91–121CrossRefGoogle Scholar
  3. Bérczi A, Lüthje S, Asard H (2001) b-type cytochromes in plasma membranes of Phaseolus vulgaris hypocotyls, Arabidopsis thaliana leaves, and Zea mays roots. Protoplasma 217:50–55PubMedCrossRefGoogle Scholar
  4. Bertero MG, Rothery RA, Palak M, Hou C, Lim D, Blasco F, Weiner JH, Strynadka NC (2003) Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Nat Struct Biol 10:681–687PubMedCrossRefGoogle Scholar
  5. Besson-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Ann Rev Plant Biol 59:21–39CrossRefGoogle Scholar
  6. Blasco F, Iobbi C, Giordano G, Chippaux M, Bonnefoy V (1989) Nitrate reductase of Escherichia coli: completion of the nucleotide sequence of the nar operon and reassessment of the role of the alpha and beta subunits in iron binding and electron transfer. J Mol Gen Genet 218:249–256CrossRefGoogle Scholar
  7. Blasco F, Guigliarelli B, Magalon A, Asso M, Giordano G, Rothery RA (2001) The coordination and function of the redox centres of the membrane-bound nitrate reductases. Cell Mol Life Sci 58:179–193PubMedCrossRefGoogle Scholar
  8. Bonete MJ, Martínez-Espinosa RM, Pire C, Zafrilla B, Richardson DJ (2008) Nitrogen metabolism in haloarchaea. Saline Systems 4:9PubMedCrossRefGoogle Scholar
  9. Botrel A, Magne C, Kaiser WM (1996) Nitrate reduction, nitrite reduction and ammonium assimilation in barley roots in response to anoxia. Plant Physiol Biochem 34:645–652Google Scholar
  10. Buc J, Giordani R (1998) A spectrophotometric method for kinetic studies with quinine-dependent oxidoreductase. Application to detection in membranes of nitrate reductase activity with menadione and duroquinone as electron donors. Enzyme Microbial Technol 22:165–169CrossRefGoogle Scholar
  11. Eick M, Stöhr C (2009) Proteolysis at the plasma membrane of tobacco roots: biochemical evidence and possible roles. Plant Physiol Biochem 47:1003–1008PubMedCrossRefGoogle Scholar
  12. Einsle O, Kroneck PMH (2004) Structural basis of denitrification. Biol Chem 385:875–883PubMedCrossRefGoogle Scholar
  13. Elliott SJ, Hoke KR, Heffron K, Palak M, Rothery RA, Weiner JH, Armstrong FA (2004) Voltammetric studies of the catalytic mechanism of the respiratory nitrate reductase from Escherichia coli: how nitrate reduction and inhibition depend on the oxidation state of the active site. Biochem 43:799–807CrossRefGoogle Scholar
  14. Fan TWM, Higashi RM, Lane AN (1988) An in vivo 1H and 31P NMR investigation of the effect of nitrate on hypoxic metabolism in maize roots. Arch Biochem Biophys 266:592–606PubMedCrossRefGoogle Scholar
  15. Furt F, Simon-Plas F, Mongrand S (2011) Lipids of the plasma membrane. In: Murphy AS, Wendy P, Schulz B (eds) The plant plasma membrane. Plant Cell Monographs 19. Springer, Heidelberg, pp 3–30Google Scholar
  16. Hempel K, Pané-Farré J, Otto A, Sievers S, Hecker M, Becher D (2010) Quantitative cell surface proteome profiling for SigB-dependent protein expression in the human pathogen Staphylococcus aureus via biotinylation. J Proteome Res 9:1579–1590PubMedCrossRefGoogle Scholar
  17. Igamberdiev AU, Hill RD (2004) Nitrate, NO and haemoglobin in plant adaptation to hypoxia: an alternative to classic fermentation pathways. J Exp Bot 55:2473–2482PubMedCrossRefGoogle Scholar
  18. Igamberdiev AU, Bykova NB, Shah JK, Hill RD (2010) Anoxic nitric oxide cycling in plants: participating reactions and possible mechanisms. Physiol Plant 138:393–404PubMedCrossRefGoogle Scholar
  19. Jones GJ, Morel FMM (1988) Plasmalemma redox activity in the diatom Thalassiosira. A possible role for nitrate reductase. Plant Physiol 87:143–147PubMedCrossRefGoogle Scholar
  20. Jormakka M, Richardson D, Byrne B, Iwata S (2004) Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes. Structure 12:95–104PubMedCrossRefGoogle Scholar
  21. Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13:266–273PubMedCrossRefGoogle Scholar
  22. Kunze M, Riedel J, Lange U, Hurwitz R, Tischner R (1997) Evidence for the presence of GPI-anchored PM-NR in leaves of Beta vulgaris and for PM-NR in barley leaves. Plant Physiol Biochem 35(507):512Google Scholar
  23. Lüthje S, Van Gestelen P, Córdoba-Pedregosa MC, González-Reyes JA, Asard H, Villalba JM, Böttger M (1998) Quinones in plant plasma membranes—a missing link? Protoplasma 205:43–51CrossRefGoogle Scholar
  24. Lüthje S, Hopff D, Schmitt A, Meisrimler C-N, Menckhoff L (2009) Hunting for low abundant redox proteins in plant plasma membranes. J Proteomics 72:475–483PubMedCrossRefGoogle Scholar
  25. MacGregor CH (1975) Solubilization of Escherichia coli nitrate reductase by a membrane-bound protease. J Bacteriol 121:1102–1110PubMedGoogle Scholar
  26. Martinez-Espinosa RM, Dridge EJ, Bonete MJ, Butt JN, Butler CS, Sargent F, Richardson DJ (2007) Look on the positive side! The orientation, identification and bioenergetics of ‘Archaeal’ membrane-bound nitrate reductases. FEMS Microbiol Lett 276:129–139PubMedCrossRefGoogle Scholar
  27. Meyer C, Stöhr C (2002) Soluble and plasma membrane-bound enzymes involved in nitrate and nitrite metabolism. In: Foyer CH, Noctor G (eds) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism. Kluwer, Dordrecht, pp 49–62Google Scholar
  28. Moche M, Stremlau S, Hecht L, Göbel C, Feussner I, Stöhr C (2010) Effect of nitrate supply and mycorrhizal inoculation on characteristics of tobacco root plasma membrane vesicles. Planta 231:425–436PubMedCrossRefGoogle Scholar
  29. Möller IM, Crane FL (1990) Redox processes in the plasma membrane. In: Larsson C, Möller IM (eds) Plant plasma membrane: structure, function, and molecular biology. Springer, Heidelberg, pp 93–126Google Scholar
  30. Müller E, Albers BP, Janiesch P (1994) Influence of nitrate and ammonium nutrition on fermentation, nitrate reductase activity and adenylate energy charge of roots of Carex pseudocyperus L. and Carex sylvatica Huds. exposed to anaerobic nutrient solutions. Plant Soil 166:221–230CrossRefGoogle Scholar
  31. Oberson J, Pavelic D, Braendle R, Rawyler A (1999) Nitrate increases membrane stability in potato cells under anoxia. J Plant Physiol 155:792–794CrossRefGoogle Scholar
  32. Palmgren MG, Bækgaard L, Lóopez-Marqués RL, Fuglsang AT (2011) Plasma membrane ATPases. In: Murphy AS, Wendy P, Schulz B (eds) The plant plasma membrane. Plant Cell Monographs 19. Springer, Heidelberg, pp 177–191Google Scholar
  33. Pihlatie M, Ambus P, Rinne J, Pilegaard K, Vesala T (2005) Plant-mediated nitrous oxide emissions from beech (Fagus sylvatica) leaves. New Phytol 168:93–98PubMedCrossRefGoogle Scholar
  34. Rawyler A, Arpagaus S, Braendle R (2002) Impact of oxygen stress and energy availability on membrane stability of plant cells. Ann Bot 90:499–507PubMedCrossRefGoogle Scholar
  35. Reck U (2003) Reinigung und biochemische Charakterisierung der plasmamembrangebundenen Nitratreduktase aus Wurzeln von Tabak (Nicotiana tabacum L. cv. Samsun N. N.). Osnabrück. Der Andere Verlag. ISBN 3-89959-139-9Google Scholar
  36. Reggiani R, Brambilla I, Bertani A (1985a) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots I. Nitrate reduction and pyridine nucleotide pools. J Exp Bot 36:1193–1199CrossRefGoogle Scholar
  37. Reggiani R, Brambilla I, Bertani A (1985b) Effect of exogenous nitrate on anaerobic metabolism in excised rice roots II. Fermentative activity and adenylic energy charge. J Exp Bot 36:1698–1704CrossRefGoogle Scholar
  38. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Nat Acad Sci USA 91:11841–11843PubMedCrossRefGoogle Scholar
  39. Richardson DJ, van Spanning RJM, Ferguson SJ (2007) The prokaryotic nitrate reductases. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 21–36CrossRefGoogle Scholar
  40. Roberts JKM, Andrade FH, Anderson IC (1985) Further evidence that cytoplasmic acidosis is a determinant of flooding intolerance in plants. Plant Physiol 77:492–494PubMedCrossRefGoogle Scholar
  41. Robinson C, Bolhuis A (2001) Protein targeting by the twin-arginine translocation pathway. Nature Rev Mol Cell Biol 2:350–356CrossRefGoogle Scholar
  42. Saglio PH, Drew MC, Pradet A (1988) Metabolic acclimation to anoxia induced by low (2–4 kPa partial pressure) oxygen retreatment (hypoxia) in root tips of Zea mays. Plant Physiol 86:61–66PubMedCrossRefGoogle Scholar
  43. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847PubMedCrossRefGoogle Scholar
  44. Sodergren EJ, DeMoss JA (1988) narI region of the Escherichia coli nitrate reductase (nar) operon contains two genes. J Bacteriol 170:1721–1729PubMedGoogle Scholar
  45. Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–186PubMedCrossRefGoogle Scholar
  46. Stöhr C (1999) Relationship of nitrate supply with growth rate plasma membrane-bound and cytosolic nitrate reductase, and tissue nitrate content in tobacco plants. Plant Cell Environ 22:169–177CrossRefGoogle Scholar
  47. Stöhr C (2007) Nitric oxide—a product of plant nitrogen metabolism. In: Lamattina L, Polacco JC (eds) Nitric oxide in plant growth, development and stress physiology. Springer, Heidelberg, pp 15–34CrossRefGoogle Scholar
  48. Stöhr C, Mäck G (2001) Diurnal changes in nitrogen assimilation of tobacco roots. J Exp Bot 52:1283–1289PubMedCrossRefGoogle Scholar
  49. Stöhr C, Stremlau S (2006) Formation and possible roles of nitric oxide in plant roots. J Exp Bot 57:463–470PubMedCrossRefGoogle Scholar
  50. Stöhr C, Ullrich WR (1997) A succinate-oxidizing nitrate reductase is located at the plasma membrane of plant roots. Planta 203:129–132CrossRefGoogle Scholar
  51. Stöhr C, Ullrich WR (2002) Generation and possible roles of NO in plant roots and their apoplastic space. J Exp Bot 53:2293–2303PubMedCrossRefGoogle Scholar
  52. Stöhr C, Schuler F, Tischner R (1995) Glycosyl-phosphatidylinositol anchored proteins exist in the plasma membrane of Chlorella saccharophila (Krüger) Nadson. Plasma-membrane-bound nitrate reductase as an example. Planta 196:284–287CrossRefGoogle Scholar
  53. Stöhr C, Strube F, Marx G, Ullrich WR, Rockel P (2001) A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212:835–841PubMedCrossRefGoogle Scholar
  54. Stoimenova M, Libourel IGL, Ratcliffe RG, Kaiser WM (2003) The role of nitrate reduction in the anoxic metabolism of roots. II. Anoxic metabolism of tobacco roots with or without nitrate reductase activity. Plant Soil 253:155–167CrossRefGoogle Scholar
  55. Takaya N (2009) Response to hypoxia, reduction of electron acceptors, and subsequent survival by filamentous fungi. Biosci Biotechnol Biochem 73:1–8PubMedCrossRefGoogle Scholar
  56. Tischner R, Ward MR, Huffaker RC (1989) Evidence for a plasmamembrane-bound nitrate reductase involved in nitrate uptake of Chlorella sorokiniana. Planta 178:19–24PubMedCrossRefGoogle Scholar
  57. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, de Pamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa. (Torr & Gray) Sci 313:1596–1604Google Scholar
  58. van Spanning RJM, Richardson DJ, Ferguson ST (2007) Introduction to the biochemistry and molecular biology of denitrification. In: Bothe H, Ferguson SJ, Newton WE (eds) Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 3–20CrossRefGoogle Scholar
  59. Vartapetian BB, Polyakova LI (1999) Protective effect of exogenous nitrate on the mitochondrial ultrastructure of Oryza sativa coleoptiles under strict anoxia. Protoplasma 206:163–167CrossRefGoogle Scholar
  60. Vartapetian BB, Andreeva IN, Generozova IP, Polyakova LI, Maslova IP, Dolgikh YI, Stepanova AY (2003) Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Ann Bot 91:155–172PubMedCrossRefGoogle Scholar
  61. Ward MR, Grimes HD, Huffaker RC (1989) Latent nitrate reductase activity is associated with the plasma membrane of corn roots. Planta 177:470–475PubMedCrossRefGoogle Scholar
  62. Wienkoop S, Schlichting R, Ullrich WR, Stöhr C (2001) Different diurnal cycles of expression of two nitrate reductase transcripts in tobacco roots. Protoplasma 217:15–19PubMedCrossRefGoogle Scholar
  63. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C, Zhang J, Zhang Y, Li R, Xu Z, Li S, Li X, Zheng H, Cong L, Lin L, Yin J, Geng J, Li G, Shi J, Liu J, Lv H, Li J, Wang J, Deng Y, Ran L, Shi X, Wang X, Wu Q, Li C, Ren X, Wang J, Wang X, Li D, Liu D, Zhang X, Ji Z, Zhao W, Sun Y, Zhang Z, Bao J, Han Y, Dong L, Ji J, Chen P, Wu S, Liu J, Xiao Y, Bu D, Tan J, Yang L, Ye C, Zhang J, Xu J, Zhou Y, Yu Y, Zhang B, Zhuang S, Wei H, Liu B, Lei M, Yu H, Li Y, Xu H, Wei S, He X, Fang L, Zhang Z, Zhang Y, Huang X, Su Z, Tong W, Li J, Tong Z, Li S, Ye J, Wang L, Fang L, Lei T, Chen C, Chen H, Xu Z, Li H, Huang H, Zhang F, Xu H, Li N, Zhao C, Li S, Dong L, Huang Y, Li L, Xi Y, Qi Q, Li W, Zhang B, Hu W, Zhang Y, Tian X, Jiao Y, Liang X, Jin J, Gao L, Zheng W, Hao B, Liu S, Wang W, Yuan L, Cao M, McDermott J, Samudrala R, Wang J, Wong GKS, Yang H (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:266–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für BotanikErnst-Moritz-Arndt-UniversitätGreifswaldGermany

Personalised recommendations