Skip to main content

Advertisement

Log in

Co-expression of VpROMT gene from Chinese wild Vitis pseudoreticulata with VpSTS in tobacco plants and its effects on the accumulation of pterostilbene

Protoplasma Aims and scope Submit manuscript

Abstract

Plant secondary metabolites, such as stilbenes, have fungicidal potential and have been found in several plant species. Stilbenes in grapevine, such as resveratrol and pterostilbene, have recently attracted much attention, they are not only helping the plant to fight against pathogen attack, but they are also being widely used as ingredients of fungicide, anti-inflammatory drugs, antioxidant, and anti-infective agents. However, resveratrol O-methyltransferase gene, related with the synthesis of pterostilbene from resveratrol, has not been characterized effectively from Chinese wild Vitis pseudoreticulata. In this study, a candidate of resveratrol O-methyltransferase gene designated as VpROMT was isolated from a powdery mildew-resistant Chinese wild V. pseudoreticulata ‘Baihe-35-1’, and characterization studies were performed. Expression studies showed that VpROMT was predominantly expressed in developing roots yet not found in the leaves, stems, nor tendrils when the plants are not challenged. Results of qRT-PCR showed that VpROMT was rapidly induced by Erysiphe necator in V. pseudoreticulata and by methyl-jasmonate, UV-irradiation in suspension culture cells of Vitis romanetii. The expression level varies in different tissues of grapevine, which MeJA and UV-C treatment significantly upregulated the expression of VpROMT gene while UV-B treatment failed to. Co-expression of VpROMT and grapevine stilbene synthase (VpSTS) gene leads to the accumulation of pterostilbene in leaves of tobacco (Nicotiana tabacum) indicating that VpROMT was able to catalyze the biosynthesis of pterostilbene from resveratrol in over-expression transgenic tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

qRT-PCR:

Quantitative reverse transcriptase-polymerase chain reaction

VpSTS:

Vitis pseudoreticulata stilbene synthase

VpROMT:

Vitis pseudoreticulata resveratrol O-methyltransferase

OMTs:

O-methyltransferases

MeJA:

Methyl jasmonate

RT-PCR:

Reverse transcriptase-polymerase chain reaction

GUS:

β-Glucuronidase

hpi:

Hours post inoculation

Hyg:

Hygromycin B

HPLC:

High performance liquid chromatography

PM:

Powdery mildew

References

  • Adrian M, Jeandet P, Douillet-Breuil AC, Tesson L, Bessis R (2000) Stilbene content of mature Vitis vinifera berries in response to UV-C elicitation. J Agric Food Chem 48:6103–6105

    Article  PubMed  CAS  Google Scholar 

  • Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Rep 18:105–119

    Article  Google Scholar 

  • Bernhard D, Tinhofer I, Tonko M, Hubl H, Ausserlechner MJ, Greil R, Kofler R, Csordas A (2000) Resveratrol causes arrest in the S-phase prior to Fas-independent apoptosis in CEM-C7H2 acute leukemia cells. Cell Death and Differentiation 7:834–842

    Article  PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Claudot AC, Eckerskorn C, Trost M, Heller W, Ernst D, Sandermann H (2000a) Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol Biol 44:733–745

    Article  PubMed  CAS  Google Scholar 

  • Chiron H, Drouet A, Lieutier F, Payer HD, Ernst D, Sandermann H (2000b) Gene induction of stilbene biosynthesis in Scots pine in response to ozone treatment, wounding, and fungal infection. Plant Physiol 124:865–872

    Article  PubMed  CAS  Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR, Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant cell Rep 17:489–496

    Article  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) Two T-DNAs co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82:257–263

    Article  Google Scholar 

  • De Framond AJ, Back EW, Chilton WS, Kayes L, Chilton M (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet 202:125–131

    Article  Google Scholar 

  • Depicker A, Herman L, Jacobs A, Schdl J, Montagu MV (1985) Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Gen Genet 201:477–484

    Article  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    PubMed  CAS  Google Scholar 

  • Dudareva N, Murfitt LM, Mann CJ, Gorenstein N, Kolosova N, Kish CM, Bonham C, Wood K (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snap dragon flowers. Plant Cell 12:949–961

    PubMed  CAS  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tissue Organ Cult 92:197–206

    Article  CAS  Google Scholar 

  • Fang Y, Smith MAL, Pepin MF (1999) Effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium pahalae). In Vitro Cell Dev Biol -Plant 35:106–113

    Article  CAS  Google Scholar 

  • Fritzmeier KH, Kindl H (1981) Coordinate induction by UV light of stilbene synthase, phenylalanine ammonia-lyase and cinnamate 4-hydroxylase in leaves of Vitaceae. Planta 151:48–52

    Article  Google Scholar 

  • Fulton TM, Chunzoongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13(3):207–209

    Article  CAS  Google Scholar 

  • Fung RWM, Gonzalo M, Fekete C, Kovacs LG, He Y, Marsh E, McIntyre LM, Schachtman DP, Qiu W (2008) Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiol 146:236–249

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–156

    Article  PubMed  CAS  Google Scholar 

  • Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E (2002) Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 14:505–519

    Article  PubMed  CAS  Google Scholar 

  • Gastaminza P, Whitten-Bauer C, Chisari FV (2010) Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. P Natl Acad Sci USA 107:291–296

    Article  CAS  Google Scholar 

  • Gauthier A, Gulick PJ, Ibrahim RK (1998) Characterization of two cDNA clones which encode O-methyltransferases for the methylation of both flavonoid and phenylpropanoid compounds. Arch Biochem Biophys 351:243–249

    Article  PubMed  CAS  Google Scholar 

  • Gindro K, Spring JL, Pezet R, Richter H, Viret O (2006) Histological and biochemical criteria for objective and early selection of grapevine cultivars resistant to Plasmopara viticola. Vitis 45:191–196

    Google Scholar 

  • Hart JH (1981) Role of phytostilbenes in decay and disease resistance. Ann Rev Phytopathol 19:437–458

    Article  CAS  Google Scholar 

  • He XZ, Dixon RA (1996) Affinity chromatography, substrate/product specificity, and amino acid sequence analysis of an isoflavone O-methyl-transferase from alfalfa (Medicago sativa L.). Arch Biochem Biophys 336:121–129

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Eichlotz D, Rogers SG, Frakey RT (1985) A simple and general method for transferring genes into plants. Sci 227:1229–1231

    Article  CAS  Google Scholar 

  • Ibrahim RK, De Luca V, Khouri HE, Latchinian L, Brisson L (1987) Enzymology and compartmentalization of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochem 26:1237–1245

    Article  Google Scholar 

  • Jang M, Cai L, Udeani GO et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    Article  PubMed  CAS  Google Scholar 

  • Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M (2002) Phytoalexins from the vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J Agr Food Chem 50(10):2731–2741

    Article  CAS  Google Scholar 

  • Kakegawa K, Kaneko Y, Hattori E, Koike K, Takeda K (1987) Cell cultures of Centaurea cyanus produce malonated anthocyanin in UV light. Phytochem 26:2261–2263

    Article  CAS  Google Scholar 

  • Kim BG, Lee Y, Hur HG, Lim Y, Ahn JH (2006) Flavonoid 3′-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochem 67:387–394

    Article  CAS  Google Scholar 

  • Kim JS, Ha TY, Ahn J, Kim HK, Kim S (2009) Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem Toxicol 47:404–409

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Krisa S, Larronde F, Budzinski H, Decendit A, Deffieux G, Mérillon JM (1999) Stilbene production by Vitis vinifera cell suspension cultures: methyl jasmonate induction and 13C biolabeling. J Nat Prod 62:1688–1690

    Article  CAS  Google Scholar 

  • La P, Cai WQ, Zhang JC, Zhang FL, Fang RX (2001) Function of resveratrol derived from transgenic plant expressing resveratrol synthase gene. Chinese Sci Bull 46(13):1103–1107

    Article  CAS  Google Scholar 

  • Langcake P (1981) Disease resistance of Vitis spp. and the production of the stress metabolites resveratrol, epsilon-viniferin, alpha-viniferin and pterostilbene. Physiol Plant Pathol 18(2):213–226

    CAS  Google Scholar 

  • Langcake P, Cornford CA, Pryce RJ (1979) Identification of pterostilbene as a phytoalexin from Vitis vinifera leaves. Phytochem 18:1025–1028

    Article  CAS  Google Scholar 

  • Lavid N, Wang J, ShalitM GI, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907

    Article  PubMed  CAS  Google Scholar 

  • Manickam M, Ramanathan M, Jahromi MA, Chansouria JP, Ray AB (1997) Antihyperglycemic activity of phenolics from Pterocarpus marsupium. J Nat Prod 60:609–610

    Article  PubMed  CAS  Google Scholar 

  • McKnight TD, Lillis MT, Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8:439–445

    Article  CAS  Google Scholar 

  • Mikstacka R, Przybylska D, Rimando AM, Baer-Dubowska W (2007) Inhibition of human recombinant cytochromes P450 CYP1A1 and CYP1B1 by trans-resveratrol methyl ethers. Mol Nutr Food Res 51:517–524

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavonol 3′-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 375:385–388

    Article  PubMed  CAS  Google Scholar 

  • Pezet R, Pont V (1988) Identification of pterostilbene in grape berries of Vitis vinifera. Plant Physiol Biochem 26:603–607

    CAS  Google Scholar 

  • Pezet R, Perret C, Jean-Denis JB, Tabacchi R, Gindro K, Viret O (2003) Delta-viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J Agr Food Chem 51:5488–5492

    Article  CAS  Google Scholar 

  • RamanaRao MV, Veluthambi K (2010) Selectable marker elimination in the T0 generation by Agrobacterium-mediated co-transformation involving Mungbean yellow mosaic virus TrAP as a non-conditional negative selectable marker and bar for transient positive selection. Plant cell Rep 29:473–483

    Article  PubMed  CAS  Google Scholar 

  • Remsberg CM, Yanez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM (2008) Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, anti-inflammatory, antioxidant and analgesic activity. Phytother Res 22:169–179

    Article  PubMed  CAS  Google Scholar 

  • Rimando AM, Cuendet M, Desmarchelier C, Mehta RG, Pezzuto JM, Duke SO (2002) Cancer chemo-preventive and antioxidant activities of pterostilbene, a naturally occurring analogue of resveratrol. J Agr Food Chem 50:3453–3457

    Article  CAS  Google Scholar 

  • Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agr Food Chem 52:4713–4719

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Saniewski M, Miszczak A, Kawa-Misczak L, Wegrzynowicz-Lesiak E, Miyamoto K et al (1998) Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. J Plant Growth Regul 17:33–37

    Article  CAS  Google Scholar 

  • Satheesh A, Pari L (2006) The antioxidant role of pterostilbene in streptozotocin nicotinamide-induced type 2 diabetes mellitus in Wistar rats. J Pharm Pharmacol 58:1483–1490

    Article  CAS  Google Scholar 

  • Sato K, Nakayama M, Shigeta J (1996) Culturing conditions affecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci 113:91–98

    Article  CAS  Google Scholar 

  • Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, Channelière S, Vergne P, Dumas C, Bendahmane M, Cock JM, Hugueney P (2002) Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxy-benzene by novel rose O-methyltransferases. FEBS Lett 523:113–118

    Article  PubMed  CAS  Google Scholar 

  • Schmidlin L, Poutararaud A, Claudel P, Metre P, Prado E, Santos-Rosa M, Wiedemann-Merdinoglu S, Karst F, Merdinoglu D, Hugueney P (2008) A stress-inducible resveratrol O-methyltransferase involved in the biosynthesis of pterostilbene in grapevine. Plant Physiol 148:1630–1639

    Article  PubMed  CAS  Google Scholar 

  • Schnee S, Viret O, Gindro K (2008) Role of stilbenes in the resistance of grapevine to powdery mildew. Physiol Mol Plant P 72:128–133

    Article  CAS  Google Scholar 

  • Schroder G, Wehingera E, Lukacin R, Wellmann F, Seefelder W, Schwab W, Schröder J (2004) Flavonoid methylation: a novel 4′-O-methyltransferase from Catharanthus roseus, and evidence that partially methylated flavanones are substrates of four different flavonoid dioxygenases. Phytochem 65:1085–1094

    Article  Google Scholar 

  • Seshadri TR (1972) Polyphenols of Pterocarpus and Dalbergia woods. Phytochem 11:881–898

    Article  CAS  Google Scholar 

  • Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27:1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Takeda J (1990) Light-induced synthesis of anthocyanin in carrot cells in suspension. II Effects of light and 2,4-D on induction and reduction of enzyme activities related to anthocyanin synthesis. J Exp Bot 41:749–755

    Article  CAS  Google Scholar 

  • Vignols F, Rigau J, Torres MA, Capeliades M, Puigdomenech P (1995) The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. Plant Cell 7:407–416

    PubMed  CAS  Google Scholar 

  • Wang J, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 368:172–180

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Liu Y, He P, Chen J, Lamicanra O, Lu J (1995) Evaluation of foliar resistance to Uncinula necator in Chinese wild Vitis species. Vitis 34:159–164

    Google Scholar 

  • Wang QF, Ma LY, Huang MJ, Wang L, Luo K, Li JM (2008) Determination of five stilbenes composition in grape leaves by high performance liquid chromatography. Chinese J Anal Chem 36(10):1359–1363

    CAS  Google Scholar 

  • Wu S, Watanabe N, Mita S, Dohra H, Ueda Y, Shibuya M, Ebizuka Y (2004) The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene. Plant Physiol 135:1–8

    Article  Google Scholar 

  • Xu W, Wang Y, Wang X, Hao W, Sun M (2005) Construction of the plant expression vectors carrying resistant genes to powdery mildew and adversities in wild species of Vitis in China. Acta Bot Boreal-Occident Sin 25(5):851–857

    CAS  Google Scholar 

  • Xu Y, Zhu Z, Xiao Y, Wang Y (2009) Construction of a cDNA Library of Vitis pseudoreticulata native to China inoculated with Uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). S Afr J Enol Viticult 30:65–71

    CAS  Google Scholar 

  • Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    Article  PubMed  CAS  Google Scholar 

  • Yu CKY, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C (2005) A stilbene synthase gene (SbSTS1) is involved in host and non-host defense in sorghum. Plant Physiol 138:3

    Google Scholar 

  • Zhang W, Curtin C, Kikuchi M, Franco C (2002) Integration of jasmonic acid and light irradiation for enhancement of anthocyanin biosynthesis in Vitis inifera suspension cultures. Plant Sci 162:459–468

    Article  Google Scholar 

  • Zhang JJ, Wang YJ, Wang XP (2003) An improved method for rapidly extracting total RNA from Vitis. J Fruit Sci 20:178–181

    CAS  Google Scholar 

  • Zhong JJ, Yoshida M, Fujiyama K, Seki T, Yoshida T (1993) Enhancement of anthocyanin production by Perilla frutescens cells in a stirred bioreactor with internal light irradiation. J Ferment Bioeng 75:299–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the National Natural Science Foundation of China (Grant no. 30940051) for generous financial support of this work, Yan Xu is supported by the program New Century Excellent Talents in University (NCET-10-0692), and the National Public Benefit (Agricultural) Research Foundation of China (200903044).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. Xu or Y. J. Wang.

Additional information

Handling Editor: Peter Nick

Y. Xu and T.F. Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Xu, T.F., Zhao, X.C. et al. Co-expression of VpROMT gene from Chinese wild Vitis pseudoreticulata with VpSTS in tobacco plants and its effects on the accumulation of pterostilbene. Protoplasma 249, 819–833 (2012). https://doi.org/10.1007/s00709-011-0335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0335-9

Keywords

Navigation