Skip to main content
Log in

Host cell processes to accomplish mechanical and non-circulative virus transmission

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host–virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AcMNPV:

Autographa californica multicapsid nucleopolyhedrovirus

BV:

Budded virus

CaMV:

Cauliflower mosaic virus

NPV:

Nucleopolyhedrovirus

OB:

Occlusion body

ODV:

Occlusion-derived virus

pif:

Per os infectivity factor

TB:

Transmission body

References

  • Amari K, Boutant E, Hofmann C, Schmitt-Keichinger C, Fernandez-Calvino L, Didier P, Lerich A, Mutterer J, Thomas CL, Heinlein M et al (2010) A family of plasmodesmal proteins with receptor-like properties for plant viral movement proteins. PLoS Pathog 6:e1001119

    Article  PubMed  Google Scholar 

  • Anduleit K, Sutton G, Diprose JM, Mertens PP, Grimes JM, Stuart DI (2005) Crystal lattice as biological phenotype for insect viruses. Protein Sci 14:2741–2743

    Article  PubMed  CAS  Google Scholar 

  • Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586–605

    Article  PubMed  CAS  Google Scholar 

  • Benitez-Alfonso Y, Faulkner C, Ritzenthaler C, Maule AJ (2010) Plasmodesmata: gateways to local and systemic virus infection. Mol Plant-Micr Inter 23:1403–1412

    Article  CAS  Google Scholar 

  • Blanc S, Uzest M, Drucker M (2011) New research horizons in vector-transmission of plant viruses. Curr Opin Microbio 14:483–491

    Article  Google Scholar 

  • Cheng RH, Olson NH, Baker TS (1992) Cauliflower mosaic virus: a 420 subunit (T = 7), multilayer structure. Virology 186:655–668

    Article  PubMed  CAS  Google Scholar 

  • Clem RJ, Robson M, Miller LK (1994) Influence of infection route on the infectivity of baculovirus mutants lacking the apoptosis-inhibiting gene p35 and the adjacent gene p94. J Virol 68:6759–6762

    PubMed  CAS  Google Scholar 

  • Coulibaly F, Chiu E, Gutmann S, Rajendran C, Haebel PW, Ikeda K, Mori H, Ward VK, Schulze-Briese C, Metcalf P (2009) The atomic structure of baculovirus polyhedra reveals the independent emergence of infectious crystals in DNA and RNA viruses. Proc Natl Acad Sci USA 106:22205–22210

    Article  PubMed  CAS  Google Scholar 

  • Drucker M, Froissart R, Hébrard E, Uzest M, Ravallec M, Espérandieu P, Mani JC, Pugnière M, Roquet F, Fereres A, Blanc S (2002) Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector. Proc Natl Acad Sci USA 99:2422–2427

    Article  PubMed  CAS  Google Scholar 

  • Engelhard EK, Kam-Morgan LN, Washburn JO, Volkman LE (1994) The insect tracheal system: a conduit for the systemic spread of Autographa californica M nuclear polyhedrosis virus. Proc Natl Acad Sci USA 91:3224–3227

    Article  PubMed  CAS  Google Scholar 

  • Espinoza AM, Medina V, Hull R, Markham PG (1991) Cauliflower mosaic virus gene II product forms distinct inclusion bodies in infected plant cells. Virology 185:337–344

    Article  PubMed  CAS  Google Scholar 

  • Fereres A, Moreno A (2009) Behavioural aspects influencing plant virus transmission by homopteran insects. Virus Res 141:158–168

    Article  PubMed  CAS  Google Scholar 

  • Flipsen JT, Martens JW, van Oers MM, Vlak JM, van Lent JW (1995) Passage of Autographa californica nuclear polyhedrosis virus through the midgut epithelium of Spodoptera exigua larvae. Virology 208:328–335

    Article  PubMed  CAS  Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21:285–294

    Article  PubMed  CAS  Google Scholar 

  • Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopath 92:576–579

    Article  Google Scholar 

  • Goto Y, Asada T (2007) Excessive expression of the plant kinesin TBK5 converts cortical and perinuclear microtubules into a radial array emanating from a single focus. Plant Cell Physiol 48:753–761

    Article  PubMed  CAS  Google Scholar 

  • Granados RR, Lawler KA (1981) In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108:297–308

    Article  PubMed  CAS  Google Scholar 

  • Gray SM, Banerjee N (1999) Mechanisms of arthropod transmission of plant and animal viruses. Microbiol Mol Biol Rev 63:128–148

    PubMed  CAS  Google Scholar 

  • Guerra-Peraza O, de Tapia M, Hohn T, Hemmings-Mieszczak M (2000) Interaction of the cauliflower mosaic virus coat protein with the pregenomic RNA leader. J Virol 74:2067–2072

    Article  PubMed  CAS  Google Scholar 

  • Guilley H, Dudley RK, Jonard G, Balàzs E, Richards KE (1982) Transcription of Cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell 30:763–773

    Article  PubMed  CAS  Google Scholar 

  • Haas M, Bureau M, Geldreich A, Yot P, Keller M (2002) Cauliflower mosaic virus: still in the news. Mol Plant Pathol 3:419–429

    Article  PubMed  CAS  Google Scholar 

  • Haas G, Azevedo J, Moissiard G, Geldreich A, Himber C, Bureau M, Fukuhara T, Keller M, Voinnet O (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27:2102–2112

    Article  PubMed  CAS  Google Scholar 

  • Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238:243–253

    Article  PubMed  CAS  Google Scholar 

  • Hogenhout SA, Ammar E-D, Whitfield AE, Redinbaugh MG (2008) Insect vector interactions with persistently transmitted viruses. Annu Rev Phytopathol 46:327–359

    Article  PubMed  CAS  Google Scholar 

  • Hoh F, Uzest M, Drucker M, Plisson-Chastang C, Bron P, Blanc S, Dumas C (2010) Structural insights into the molecular mechanisms of cauliflower mosaic virus transmission by its insect vector. J Virol 84:4706–4713

    Article  PubMed  CAS  Google Scholar 

  • Hohn T, Corsten S, Dominguez D, Fütterer J, Kirk D, Hemmings-Mieszczak M, Pooggin M, Schärer-Hernandez N, Ryabova L (2001) Shunting is a translation strategy used by plant pararetroviruses (Caulimoviridae). Micron 32:51–57

    Article  PubMed  CAS  Google Scholar 

  • Hom LG, Ohkawa T, Trudeau D, Volkman LE (2002) Autographa californica M nucleopolyhedrovirus ProV-CATH is activated during infected cell death. Virology 296:212–218

    Article  PubMed  CAS  Google Scholar 

  • Kamita SG, Nagasaka K, Chua JW, Shimada T, Mita K, Kobayashi M, Maeda S, Hammock BD (2005) A baculovirus-encoded protein tyrosine phosphatase gene induces enhanced locomotory activity in a lepidopteran host. Proc Natl Acad Sci USA 102:2584–2589

    Article  PubMed  CAS  Google Scholar 

  • Karsies A, Merkle T, Szurek B, Bonas U, Hohn T, Leclerc D (2002) Regulated nuclear targeting of cauliflower mosaic virus. J Gen Virol 83:1783–1790

    PubMed  CAS  Google Scholar 

  • Kawata T, Nakatsuka A, Tabata T, Iwabuchi M (1989) Function of the hexameric sequence in the cauliflower mosaic virus 35S RNA promoter region. Biochem Biophys Res Commun 164:387–393

    Article  PubMed  CAS  Google Scholar 

  • Ke J, Wang J, Deng R, Wang X (2008) Autographa californica multiple nucleopolyhedrovirus ac66 is required for the efficient egress of nucleocapsids from the nucleus, general synthesis of preoccluded virions and occlusion body formation. Virology 374:421–431

    Article  PubMed  CAS  Google Scholar 

  • Keddie BA, Aponte GW, Volkman LE (1989) The pathway of infection of Autographa californica nuclear polyhedrosis virus in an insect host. Science 243:1728–1730

    Article  PubMed  CAS  Google Scholar 

  • Khelifa M, Journou S, Krishnan K, Gargani D, Espérandieu P, Blanc S, Drucker M (2007) Electron-lucent inclusion bodies are structures specialized for aphid transmission of cauliflower mosaic virus. J Gen Virol 88:2872–2880

    Article  PubMed  CAS  Google Scholar 

  • Khelifa M, Massé D, Blanc S, Drucker M (2010) Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts. Virology 396:238–245

    Article  PubMed  CAS  Google Scholar 

  • Kiss-László Z, Blanc S, Hohn T (1995) Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity. EMBO J 14:3552–3562

    PubMed  Google Scholar 

  • Kost TA, Condreay JP, Jarvis DL (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nature Biotech 23:567–575

    Article  CAS  Google Scholar 

  • Kruse J, Timmins P, Witz J (1987) The spherically averaged structure of a DNA isometric plant virus: cauliflower mosaic virus. Virology 159:166–168

    Article  PubMed  CAS  Google Scholar 

  • Kuno G, Chang G-JJ (2005) Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 18:608–637

    Article  PubMed  CAS  Google Scholar 

  • Lanier LM, Volkman LE (1998) Actinbinding and nucleation by Autographa california M nucleopolyhedrovirus. Virology 243:167–177

    Article  PubMed  CAS  Google Scholar 

  • Lapointe R, Popham HJ, Straschil U, Goulding D, O’Reilly DR, Olszewski JA (2004) Characterization of two Autographa californica nucleopolyhedrovirus proteins, Ac145 and Ac150, which affect oral infectivity in a host-dependent manner. J Virol 78:6439–6448

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Poloumienko A, Belfry S, Qu X, Chen W, MacAfee N, Morin B, Lucarotti C, Krause M (1996) A common pathway for p10 and calyx proteins in progressive stages of polyhedron envelope assembly in AcMNPV-infected Spodoptera frugiperda larvae. Arch Virol 141:1247–1258

    Article  PubMed  CAS  Google Scholar 

  • Li X, Song J, Jiang T, Liang C, Chen X (2007) The N-terminal hydrophobic sequence of Autographa californica nucleopolyhedrovirus PIF-3 is essential for oral infection. Arch Virol 152:1851–1858

    Article  PubMed  CAS  Google Scholar 

  • Love AJ, Yun BW, Laval V, Loake GJ, Milner JJ (2005) Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense-signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol 139:935–948

    Article  PubMed  CAS  Google Scholar 

  • Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009a) A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. Plant J 58:135–146

    Article  PubMed  Google Scholar 

  • Martinière A, Zancarini A, Drucker M (2009b) Aphid transmission of Cauliflower mosaic virus: the role of the host plant. Plant Signal Behav 4:548–550

    Article  PubMed  Google Scholar 

  • Martinière A, Macia J-L, Bagnolini G, Jridi C, Bak A, Blanc S, Drucker M (2011) VAPA, an innovative “virus-acquisition phenotyping assay” opens new horizons in research into the vector-transmission of plant viruses. PLoS One 6:e23241

    Article  PubMed  Google Scholar 

  • Matthews KR (2011) Controlling and coordinating development in vector-transmitted parasites. Science 331:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Miles PW (1999) Aphid Saliva. Biol Rev 74:41–85

    Article  Google Scholar 

  • Moury B, Fabre F, Senoussi R (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc Natl Acad Sci USA 104:17891–17896

    Article  PubMed  CAS  Google Scholar 

  • Ng JC, Falk BW (2006) Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu Rev Phytopathol 44:183–212

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa T, Washburn JO, Sitapara R, Sid E, Volkman LE (2005) Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115. J Virol 79:15258–15264

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa T, Volkman LE, Welch MD (2010) Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol 190:187–195

    Article  PubMed  CAS  Google Scholar 

  • Palacios I, Drucker M, Blanc S, Leite S, Moreno A, Fereres A (2002) Cauliflower mosaic virus is preferentially acquired from the phloem by its aphid vectors. J Gen Virol 83:3163–3171

    PubMed  CAS  Google Scholar 

  • Park HS, Himmelbach A, Browning KS, Hohn T, Ryabova LA (2001) A plant viral “reinitiation” factor interacts with the host translational machinery. Cell 106:723–733

    Google Scholar 

  • Peng K, van Oers MM, Hu Z, van Lent JW, Vlak JM (2010) Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus. J Virol 84:9497–9504

    Article  PubMed  CAS  Google Scholar 

  • Pirone TP, Pound GS, Shepard RJ (1960) Purification and properties of cauliflower mosaic virus. Nature 186:656–657

    Article  PubMed  CAS  Google Scholar 

  • Plisson C, Uzest M, Drucker M, Froissart R, Dumas C, Conway J, Thomas D, Blanc S, Bron P (2005) Structure of the mature P3-virus particle complex of Cauliflower mosaic virus revealed by cryo-electron microscopy. J Mol Biol 346:267–277

    Article  PubMed  CAS  Google Scholar 

  • Rohrmann GF (2011) Baculovirus Molecular Biology, 2nd edition. Bethesda (MD): National Center for Biotechnology Information (US).

  • Rüth J, Schweyen RJ, Hirt H (1994) The plant transcription factor TGA1 stimulates expression of the CaMV 35S promoter in Saccharomyces cerevisiae. Plant Mol Biol 25:323–328

    Article  PubMed  Google Scholar 

  • Shivaprasad PV, Rajeswaran R, Blevins T, Schoelz J, Meins F Jr, Hohn T, Pooggin MM (2008) The CaMV transactivator/viroplasmin interferes with RDR6-dependent trans-acting and secondary siRNA pathways in Arabidopsis. Nucleic Acids Res 36:5896–5909

    Article  PubMed  CAS  Google Scholar 

  • Shope RE (1957) The leech as a potential virus reservoir. J Exp Med 105:373–382

    Article  PubMed  CAS  Google Scholar 

  • Szewczyk B, Rabalski L, Krol E, Sihler W, de Souza ML (2009) Baculovirus biopesticides—a safe alternative to chemical protection of plants. J Biopestic 2:209–216

    CAS  Google Scholar 

  • Thomas CJ, Brown HL, Hawes CR, Lee BY, Min MK, King LA, Possee RD (1998) Localization of a baculovirus-induced chitinase in the insect cell endoplasmic reticulum. J Virol 72:10207–10212

    PubMed  CAS  Google Scholar 

  • Uzest M, Gargani D, Drucker M, Hébrard E, Garzo E, Candresse T, Fereres A, Blanc S (2007) A protein key to plant virus transmission at the tip of the insect vector stylet. Proc Natl Acad Sci USA 104:17959–17964

    Article  PubMed  CAS  Google Scholar 

  • Uzest M, Gargani D, Dombrovsky A, Cazevieille C, Cot D, Blanc S (2010) The “acrostyle”: a newly described anatomical structure in aphid stylets. Arthropod Struct Dev 39:221–229

    Article  PubMed  Google Scholar 

  • van Loo ND, Fortunati E, Ehlert E, Rabelink M, Grosveld F, Scholte BJ (2001) Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids. J Virol 75:961–970

    Article  PubMed  Google Scholar 

  • Vobis M, D'Haese J, Mehlhorn H, Mencke N (2003) Evidence of horizontal transmission of feline leukemia virus by the cat flea (Ctenocephalides felis). Parasitol Res 91:467–470

    Article  PubMed  CAS  Google Scholar 

  • Washburn JO, Lyons EH, Haas-Stapleton EJ, Volkman LE (1999) Multiple nucleocapsid packaging of Autographa californica nucleopolyhedrovirus accelerates the onset of systemic infection in Trichoplusia ni. J Virol 73:411–416

    PubMed  CAS  Google Scholar 

  • Washburn JO, Chan EY, Volkman LE, Aumiller JJ, Jarvis DL (2003a) Early synthesis of budded virus envelope fusion protein GP64 enhances Autographa californica multicapsid nucleopolyhedrovirus virulence in orally infected Heliothis virescens. J Virol 77:280–290

    Article  PubMed  CAS  Google Scholar 

  • Washburn JO, Trudeau D, Wong JF, Volkman LE (2003b) Early pathogenesis of Autographa californica multiple nucleopolyhedrovirus and Helicoverpa zea single nucleopolyhedrovirus in Heliothis virescens: a comparison of the ‘M’ and ‘S’ strategies for establishing fatal infection. J Gen Virol 84:343–351

    Article  PubMed  CAS  Google Scholar 

  • Williams GV, Rohel DZ, Kuzio J, Faulkner P (1989) A cytopathological investigation of Autographa californica nuclear polyhedrosis virus p10 gene function using insertion/deletion mutants. J Gen Virol 70:187–202

    Article  PubMed  CAS  Google Scholar 

  • Xu HJ, Yang ZN, Zhao JF, Tian CH, Ge JQ, Tang XD, Bao YY, Zhang CX (2008) Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production. J Gen Virol 89:1212–1219

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

AB, AM, SB and MD acknowledge support by the French government, the Région Languedoc-Roussilon, the SPE department of INRA and the Agence National de la Recherche.

Competing interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Drucker.

Additional information

Handling Editor: David Robinson

Aurélie Bak, Sarah L. Irons and Alexandre Martinière are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, A., Irons, S.L., Martinière, A. et al. Host cell processes to accomplish mechanical and non-circulative virus transmission. Protoplasma 249, 529–539 (2012). https://doi.org/10.1007/s00709-011-0328-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0328-8

Keywords

Navigation