Skip to main content
Log in

Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L.

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The subcellular targets of hexavalent chromium [Cr(VI)] were examined in Allium cepa root tips with confocal laser scanning microscopy. Cr(VI) exerted dose- and time-dependent negative effects on root growth rate, the mitotic index and microtubule (MT) organization during cell division cycle. Interphase MTs were more resistant than the mitotic ones, but when affected they were shorter, sparse and disoriented. The preprophase band of MTs became poorly organized, branched or with fragmented MTs, whilst neither a perinuclear array nor a prophase spindle was formed. Metaphase spindles converged to eccentric mini poles or consisted of dissimilar halves and were unable to correctly orient the chromosomes. Anaphase spindles were less disturbed, but chromatids failed to separate; neither did they move to the poles. At telophase, projecting, lagging or bridging chromosomes and micronuclei also occurred. Phragmoplasts were unilaterally developed, split, located at unexpected sites and frequently dissociated from the branched and misaligned cell plates. Chromosomal aberrations were directly correlated with MT disturbance. The morphology and distribution of endoplasmic reticulum was severely perturbed and presumably contributed to MT disassembly. Heavy callose apposition was also induced by Cr(VI), maybe in the context of a cellular defence reaction. Results indicate that MTs are one of the main subcellular targets of Cr(VI), MT impairment underlies chromosomal and mitotic aberrations, and MTs may constitute a reliable biomonitoring system for Cr(VI) toxicity in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CLSM:

Confocal laser scanning microscope

Cr:

Chromium

Cr(III):

Trivalent chromium

Cr(VI):

Hexavalent chromium

ER:

Endoplasmic reticulum

MT:

Microtubule

PPB:

Preprophase band

ROS:

Reactive oxygen species

References

  • Adamakis I-DS, Panteris E, Eleftheriou EP (2010a) Tungsten affects the cortical microtubules of Pisum sativum root cells: experiments on tungsten–molybdenum antagonism. Plant Biol 12:114–124. doi:10.1111/j.1438-8677.2009.00197.x

    Article  PubMed  CAS  Google Scholar 

  • Adamakis I-DS, Panteris E, Eleftheriou EP (2010b) The cortical microtubules are a universal target of tungsten toxicity among land plant taxa. J Biol Res-Thessaloniki 13:59–66

    CAS  Google Scholar 

  • Apostolakos P, Galatis B (1998) Probable cytoskeleton involvement in stomatal pore formation in Asplenium nidus L. Protoplasma 203:48–57. doi:10.1007/BF01280586

    Article  Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Shawaney SK (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agric Ecos Environ 47:47–57. doi:10.1016/0167-8809(93)90135-C

    Article  CAS  Google Scholar 

  • Botsou F, Karageorgis AP, Dassenakis E, Scoullos M (2011) Assessment of heavy metal contamination and mineral magnetic characterization of the Asopos River sediments (Central Greece). Marine Poll Bull 62:547–563. doi:10.1016/j.marpolbul.2010.11.029

    Article  CAS  Google Scholar 

  • Castro RO, Martínez M, López J, Cervantes C, Dubrovsky J (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci 172:684–691. doi:10.1016/j.plantsci.2006.11.004

    Article  CAS  Google Scholar 

  • Chandra P, Sinha S, Rai UN (1997) Bioremediation of Cr from water and soil by vascular aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants, ACS Symposium Series #664. American Chemical Society, Washington, DC, pp 274–282

    Chapter  Google Scholar 

  • Chidambaram A, Sundaramoorthy P, Murugan A, Sankar Ganesh K, Baskaran L (2009) Chromium induced cytotoxicity in blackgram (Vigna mungo L.). Iran J Environ Health Sci Eng 6:17–22

    CAS  Google Scholar 

  • Degrassi F, Rizzoni M (1982) Micronucleus test in Vicia faba root tips to detect mutagen damage in fresh-water pollution. Mutat Res 97:19–23. doi:10.1016/0165-1161(82)90016-4

    CAS  Google Scholar 

  • Dho S, Camusso W, Mucciarelli M, Fusconi A (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling roots: effects on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23. doi:10.1016/j.envexpbot.2010.02.010

    Article  CAS  Google Scholar 

  • Dovgalyuk A, Kalynyak T, YaB B (2003) Heavy metals have a different action from aluminium in disrupting microtubules in Allium cepa meristematic cells. Cell Biol Intern 27:193–195. doi:10.1016/S1065-6995(02)00334-7

    Article  CAS  Google Scholar 

  • EC Council Directive (98/83/EC) of 3 November 1998 on the quality of water intended for human consumption. Official J Eur Comm L330/32

  • Eleftheriou EP, Bekiari E (2000) Ultrastructural effects of the herbicide chlorpropham (CIPC) in root tip cells of wheat. Plant Soil 226:11–19. doi:10.1023/A:1026409027223

    Article  CAS  Google Scholar 

  • Eun S-O, Youn HS, Lee Y (2000) Lead disturbs microtubule organization in the root meristem of Zea mays. Physiol Plant 110:356–365. doi:10.1111/j.1399-3054.2000.1100310.x

    Article  Google Scholar 

  • Fenech M, Morley AA (1985) Measurement of micronuclei in lymphocytes. Mutat Res 147:29–36. doi:10.1016/0165-1161(85)90015-9

    PubMed  CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2000) Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum. I. Mitotic cells. New Phytol 145:211–224. doi:10.1046/j.1469-8137.2000.00580.x

    Article  CAS  Google Scholar 

  • Frantzios G, Galatis B, Apostolakos P (2001) Aluminium effects on microtubule organization in dividing root-tip cells of Triticum turgidum. II. Cytokinetic cells. J Plant Res 114:157–170. doi:10.1007/PL00013979

    Article  CAS  Google Scholar 

  • Fusconi A, Gallo C, Camusso W (2007) Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat Res 632:9–19. doi:10.1016/j.mrgentox.2007.03.012

    PubMed  CAS  Google Scholar 

  • Galatis B, Apostolakos P (1991) Patterns of microtubule reappearance in root cells of Vigna sinensis recovering from a colchicine treatment. Protoplasma 160:131–143. doi:10.1007/BF01539965

    Article  Google Scholar 

  • Gunning BES, Steer MW (1996) Plant cell biology, structure and function. Jones and Bartlett, Sudbury

    Google Scholar 

  • Heddle JA, Hite M, Kirkhart B, Mavournin K, MacGregor JT, Newell GW, Salamone MF (1983) The induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gen-Tox Program. Mutat Res 123:61–118. doi:10.1016/j.nucmedbio.2004.08.010

    PubMed  CAS  Google Scholar 

  • Hepler P, Hush JM (1996) Behavior of microtubules in living plant cells. Plant Physiol 112:455–461

    PubMed  CAS  Google Scholar 

  • Jain R, Srivastava S, Madan VK (2000) Influence of chromium on growth and cell division of sugarcane. Indian J Plant Physiol 5:228–231

    CAS  Google Scholar 

  • Jamal SN, Iqbal MZ, Athar M (2006) Effect of aluminum and chromium on the germination and growth of two Vigna species. Int J Environ Sci Tech 3:53–58

    CAS  Google Scholar 

  • Jayaprakash Ch, Srinivas N, Rao BV, Prakash Rao PVV (1994) Effect of chromium(VI) on the mitotic activity of Allium cepa root meristems. J Environ Biol 15:255–261

    CAS  Google Scholar 

  • Jones DL, Blancaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall regidification in maize roots. Plant Cell Environ 29:1309–1318. doi:10.1111/j.1365-3040.2006.01509.x

    Article  PubMed  CAS  Google Scholar 

  • Karagiannidou TH, Eleftheriou EP, Tsekos I, Galatis B, Apostolakos P (1995) Colchicine-induced paracrystals in root cells of wheat (Triticum aestivum L.). Ann Bot 76:23–30. doi:10.1006/anbo.1995.1074

    Article  CAS  Google Scholar 

  • Kartusch R (2003) On the mechanism of callose synthesis induction by metal ions in onion epidermal cells. Protoplasma 220:219–225. doi:10.1007/s00709-002-0047-2

    Article  PubMed  CAS  Google Scholar 

  • Kim HY, Lee SB, Jang BC (2004) Subchronic inhalation toxicity of soluble hexavalent chromium trioxide in rats. Arch Toxicol 78:363–368. doi:10.1007/s00204-004-0553-4

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeastern Geology 16:14–17

    Google Scholar 

  • Lee C-F, Liu C-Y, Hsieh R-H, Wei Y-H (2005) Oxidative stress-induced depolymerisation of microtubules and alteration of mitochondrial mass in human cells. Ann NY Acad Sci 1042:246–254. doi:10.1196/annals.1338.027

    Article  PubMed  CAS  Google Scholar 

  • Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mutat Res 682:71–81. doi:10.1016/j.mrrev.2009.06.002

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Jiang W, Li M (1992) Effects of trivalent and hexavalent chromium on root growth and cell division of Allium cepa. Hereditas 117:23–29. doi:10.1111/j.1601-5223.1992.tb00003.x

    Article  CAS  Google Scholar 

  • Liu D, Xue P, Meng Q, Zou J, Gu J, Jiang W (2009) Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. Plant Cell Rep 28:695–702. doi:10.1007/s00299-009-0669-3

    Article  PubMed  CAS  Google Scholar 

  • Ma T-H, Xu Z, Xu C, McConnell H, Rabago EV, Arreola GA, Zhang H (1995) The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutat Res 334:185–195. doi:10.1016/0165-1161(95)90010-1

    PubMed  CAS  Google Scholar 

  • Matsushima R, Hayashi Y, Kondo M, Shimada T, Nishimura M, Hara-Nishimura I (2002) An endoplasmic reticulum-derived structure that is induced under stress conditions in Arabidopsis. Plant Physiol 130:1807–1814. doi:10.1104/pp.900056

    Article  PubMed  CAS  Google Scholar 

  • Napier RM, Fowke LC, Hawes C, Lewis M, Pelham HR (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271

    PubMed  CAS  Google Scholar 

  • O’Brien ET, Salmon ED, Erickson HP (1997) How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 36:125–135. doi:(SICI)1098-1998)31:2/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2-8

    Article  PubMed  Google Scholar 

  • Panda SK (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J Plant Physiol 164:1419–1428. doi:10.1016/j.jplph.2007.01.012

    Article  PubMed  CAS  Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17:95–102. doi:10.1590/S1677-04202005000100008

    CAS  Google Scholar 

  • Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734. doi:10.1007/s00128-001-0069-z

    PubMed  CAS  Google Scholar 

  • Putney JW Jr, Ribeiro CM (2000) Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores. Cell Mol Life Sci 57:1272–1286. doi:10.1007/PL00000765

    Article  PubMed  CAS  Google Scholar 

  • Qian XW (2004) Mutagenic effects of chromium trioxide on root tip cells of Vicia faba. J Zhejiang Univ Sci 5:1570–1576. doi:10.1631/jzus.2004.1570

    Article  PubMed  CAS  Google Scholar 

  • Read SM, Schlfipmann H, Whitten E, Clarke AE, Bacic A (1992) The composition, structure and synthesis of cell walls of tobacco pollen tubes grown in different culture conditions. In: Sassen MMA, Derksen JWM, Emons AMC, Wolters-Arts AMC (eds) Sixth Cell Wall Meeting. Nijmegen University Press, Nijmegen, p 112

    Google Scholar 

  • Schaeffer HJ, Walton JD (1990) Aluminum ions induce oat protoplasts to produce an extracellular (1–3)-β-d-glucan. Plant Physiol 94:13–19. doi:10.1104/pp.94.1.13

    Article  PubMed  CAS  Google Scholar 

  • Schwarzerová K, Zelenková S, Nick P, Opatrný Z (2002) Aluminum-induced rapid changes in the microtubular cytoskeleton of tobacco cell lines. Plant Cell Physiol 43:207–216. doi:10.1093/pcp/pcf028

    Article  PubMed  Google Scholar 

  • Shanker AK, Cervantes C, Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753. doi:10.1016/j.envint.2005.02.003

    Article  PubMed  CAS  Google Scholar 

  • Shanker AK, Djanaguiraman M, Venkateswarlu B (2009) Chromium interactions in plants: current status and future strategies. Metallomics 1:375–383. doi:10.1039/B904571F

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Fujiwara T, Samaj J, Baluska F, Yang Z, Osawa H, Maeda T, Mori T, Volkmann D, Matsumoto H (2000) Aluminum-induced 1→3-β-d-glucan inhibits cell-to-cell trafficking of molecules through plasmodesmata: a new mechanism of aluminum toxicity in plants. Plant Physiol 124:991–1006

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Pike S, Gassmann W, Baskin TI (2003) Aluminum rapidly depolymerises cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675. doi:10.1093/pcp/pcg094

    Article  PubMed  CAS  Google Scholar 

  • Sorahan T, Burges DC, Hamilton L (1998) Lung cancer mortality in nickel/chromium platers. Occup Environ Med 55:236–242. doi:10.1136/oem.55.4.236

    Article  PubMed  CAS  Google Scholar 

  • Speranza A, Ferri P, Battistelli M, Falcieri E, Crinelli R, Scoccianti V (2007) Both trivalent and hexavalent chromium strongly alter in vitro germination and ultrastructure of kiwifruit pollen. Chemosphere 66:1165–1174. doi:10.1016/j.chemosphere.2006.08.019

    Article  PubMed  CAS  Google Scholar 

  • Speranza A, Taddei AR, Gambelini G, Ovidi E, Scoccianti V (2009) The cell wall of kiwifruit pollen tubes is a target for chromium toxicity: alterations to morphology, callose pattern and arabinogalactan protein distribution. Plant Biol 11:179–193. doi:10.1111/j.1438-8677.2008.00129.x

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Prakash S, Srivastava MM (1999) Chromium mobilization and plant availability—the impact of organic complexing agents. Plant Soil 212:203–208. doi:10.1023/A:1004691217480

    Article  CAS  Google Scholar 

  • Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165. doi:10.1046/j.1365-313X.1997.11061151.x (Mini-review)

    Article  PubMed  CAS  Google Scholar 

  • Steinkellner H, Mun-Sik K, Helma C, Ecker S, Ma TH, Horak O, Kundi M, Knasmüller S (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutagen 31:183–191. doi:10.1002/(SICI)1098-2280(1998)31:2<183::AID-EM11>3.0.CO;2-8

    Article  PubMed  CAS  Google Scholar 

  • Vasilatos C, Megremi I, Economou-Eliopoulos M, Mitsis I (2008) Hexavalent chromium and other toxic elements in natural waters in the Thiva–Tanagra–Malakasa Basin, Greece. Hellenic J Geosci 43:57–66

    Google Scholar 

  • Vázquez MD, Poschenrieder C, Barceló J (1987) Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59:427–438

    Google Scholar 

  • Wallin M, Larsson H, Edstrom A (1977) Tubulin sulfhydryl groups and polymerization in vitro. Exp Cell Res 107:219–225. doi:10.1016/0014-4827(77)90403-7

    Article  PubMed  CAS  Google Scholar 

  • Weisenberg RC, Deery WJ (1981) The mechanism of calcium-induced microtubule disassembly. Biochem Biophys Res Commun 102:924–931. doi:10.1016/0006-291X(81)91626-0

    Article  PubMed  CAS  Google Scholar 

  • Xu P, Liu D, Jiang W (2009) Cadmium effects on the organization of microtubular cytoskeleton in interphase and mitotic cells of Allium sativum. Biol Plant 53:387–390. doi:10.1007/s10535-009-0073-4

    Article  CAS  Google Scholar 

  • Zachariadis M, Quader H, Galatis B, Apostolakos P (2003) Organization of the endoplasmic reticulum in dividing cells of the gymnosperms Pinus brutia and Pinus nigra and of the pterophyte Asplenium nidus. Cell Biol Int 27:31–40. doi:10.1016/S1065-6995(02)00254-8

    Article  PubMed  CAS  Google Scholar 

  • Zachariadis M, Quader H, Galatis B, Apostolakos P (2004) An inhibitor of the ATP-dependent endoplasmic reticulum Ca2+-pump affects spindle organization in dividing cells of the angiosperm Triticum turgidum but not in species of gymnosperms and pteridophytes. J Biol Res 2:3–19

    CAS  Google Scholar 

  • Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206:293–299. doi:10.1007/s004250050403

    Article  CAS  Google Scholar 

  • Zenk-Meinhart H (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30. doi:10.1016/S0378-1119(96)00422-2

    Article  Google Scholar 

  • Zhang DH, Callaham DA, Hepler PK (1990) Regulation of anaphase chromosome motion in Tradescantia by calcium and related signaling agents. J Cell Biol 111:171–182. doi:10.1083/jcb.111.1.171

    Article  PubMed  CAS  Google Scholar 

  • Zou JH, Wang M, Jiang WS, Liu DH (2006) Effects of hexavalent chromium(VI) on root growth and cell division in root tip cells of Amaranthus viridis L. Pak J Bot 38:673–681

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Anastasia Tsingotjidou, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece, for generously providing access to the Nikon D-Eclipse C1 CLSM. We also thank Prof. Peter Hepler, University of Massachusetts, Amherst, USA, for critically reading the text and valuable suggestions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleftherios P. Eleftheriou.

Additional information

Handling Editor: Anne-Catherine Schmit

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eleftheriou, E.P., Adamakis, ID.S. & Melissa, P. Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L.. Protoplasma 249, 401–416 (2012). https://doi.org/10.1007/s00709-011-0292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0292-3

Keywords

Navigation