Skip to main content
Log in

Early and late plastid development in response to chill stress and heat stress in wheat seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Five-day-old etiolated wheat (Triticum aestivum L.) seedlings were transferred to 7°C (chill stress), 25°C (control), and 42°C (heat stress) and were kept in the dark or light for different time periods. Plastids were isolated from the control and stressed seedlings, and their low-temperature (77 K) fluorescence emission spectra were monitored. Most of the Protochlorophyllide (Pchlide) present in heat-stressed etiolated seedlings were in nonphototransformable form. The phototransformable Pchlide (F657) rapidly decreased when 5-day-old etiolated seedlings were transferred to 42°C in the dark for 24 h. A flash illumination of 0.2 s given to etiolated heat-stressed seedlings resulted in substantial arrest of Shibata shift, while in chill-stress conditions, it was only partially affected. In high temperature, due to disaggregation of polymeric Pchlide–Pchlide oxidoreductase (POR)–nicotinamide adenine dinucleotide phosphate (NADPH) molecules, the conversion of nonphototransformable Pchlide to its phototransformable form is substantially delayed resulting in impaired Shibata shift and belated development of the core antenna CP47 Photosystem II (PSII). Chill stress, however, did not disaggregate the polymeric Pchlide–POR–NADPH molecule-suppressed Pchlide and Chl synthesis and impaired of the assembly of PSII core antenna CP47 that emits F695 and PSI that emits F735. The decreased gene/protein expression and reduced posttranslational import of plastidic proteins, importantly POR in temperature-stressed plants, may be responsible for the delay in conversion of nonphototransformable to phototransformable form of Pchlide and plastid biogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALA:

5-Aminolevulinic acid

Chl:

Chlorophyll

Chlide:

Chlorophyllide

NADPH:

Nicotinamide adenine dinucleotide phosphate

Pchlide:

Protochlorophyllide

POR:

Protochlorophyllide oxidoreductase

References

  • Abdelkader AF, Aronsson H, Solymosi K, Böddi B, Sundqvist C (2007) High salt stress induces swollen prothylakoids in dark-grown wheat and alters both prolamellar body transformation and reformation after irradiation. J Exp Bot 58:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). Phytochrome-induced decrease of translatable mRNA coding for the NADPH: protochlorophyllide oxidoreductase. Eur J Biochem 120:89–93

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH: protochlorophyllide oxidoreductase A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108:1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Baker NR, Miranda V (1981) Development of primary photosynthetic processes in leaves grown under a diurnal light regime. In: Akoyunoglou G (ed) Photosynthesis, vol V. Balaban Int Science Services, Philadelphia

    Google Scholar 

  • Belyaeva OB, Timofeev KN, Litvia FF (1988) The primary reactions in the protochlorophyllide photoreduction as investigated by optical ESR spectroscopy. Photosynth Res 15:247–256

    Article  CAS  Google Scholar 

  • Bhardwaj R, Singhal GS (1981) Spectral distribution of fluorescence at 77 K of heat-treated and developing water-stressed chloroplasts. In: Akoyunoglou G (ed) Photosynthesis, vol V. Balaban Int Science Services, Philadelphia, pp 407–416

    Google Scholar 

  • Böddi B, Lindsten A, Ryberg M, Sundqvist C (1989) On the aggregational states of protochlorophyllide and its protein complexes in wheat etioplasts. Physiol Plant 76:135–143

    Article  Google Scholar 

  • Böddi B, Lindsten A, Ryberg M, Sundqvist C (1990) Phototransformation of aggregated forms of protochlorophyllide in isolated etioplast inner memebranes. Photochem Photobiol 52:83–87

    Article  Google Scholar 

  • Böddi B, Ryberg M, Sundqvist C (1991) The formation of a short-wavelength chlorophyllide form at partial phototransformation of protochlorophyllide in etioplast inner membranes. Photochem Photobiol 53:667–673

    Article  Google Scholar 

  • Browse J, Xin Z (2001) Temperature sensing and cold acclimation. Curr Opin Plant Biol 4:241–246

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty N, Tripathy BC (1992) Involvement of singlet oxygen in 5-aminolevulinic acid induced photodynamic damage of cucumber (Cucumis sativus L.) Chloroplasts. Plant Physiol 98:7–11

    Article  PubMed  CAS  Google Scholar 

  • Chetti MB, Nobel PS (1988) Recovery of photosynthetic reactions after high-temperature treatments of a heat-tolerant cactus. Photosynth Res 18:277–286

    Article  CAS  Google Scholar 

  • Domanskii V, Rassadina V, Gus-Mayer S, Wanner G, Schoch S, Rüdiger W (2003) Characterization of two phases of chlorophyll formation during greening of etiolated barley leaves. Planta 216:475–483

    PubMed  CAS  Google Scholar 

  • Dutta S, Mohanty S, Tripathy BC (2009) Role of temperature stress on chloroplast biogenesis and protein import in pea. Plant Physiol 150:1050–1061

    Article  PubMed  CAS  Google Scholar 

  • Eullaffroy P, Popovic R (1997) Effect of heat treatment on protochlorophyllide phototransformation initiated by different light intensities. J Plant Physiol 151:293–298

    CAS  Google Scholar 

  • Eullaffroy P, Salvetat R, Franck F, Popovic R (1995) Temperature dependence of chlorophyll spectral shifts and photoactive protochlorophyllide regeneration after flash in etiolated barley leaves. J Photochem Photobiol B Biol 62:751–756

    Article  Google Scholar 

  • Feierabend J, Schaan C, Hertwig B (1992) Photoinactivation of catalase occurs under both high- and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiol 100:1554–1561

    Article  PubMed  CAS  Google Scholar 

  • Franck F (1993) On the formation of photosystem II chlorophyll-proteins after a short light flash in etiolated barley leaves, as monitored by in vivo fluorescence spectroscopy. J Photochem Photobiol B Biol 18:35–40

    Article  CAS  Google Scholar 

  • Franck F, Eullaffroy P, Popovic R (1997) Formation of long-wavelength chlorophyllide (Chlide695) is required for the assembly of photosystem II in etiolated barley leaves. Photosynth Res 51:107–118

    Article  CAS  Google Scholar 

  • Govindachary S, Bukhov NG, Joly D, Carpentier R (2004) Photosystem II inhibition by moderate light under low temperature in intact leaves of chilling-sensitive and -tolerant plants. Physiol Plant 121:322–333

    Article  PubMed  CAS  Google Scholar 

  • Govindachary S, Bigras C, Harnois J, Joly D, Carpentier R (2007) Changes in the mode of electron flow to photosystem I following chilling-induced photoinhibition in a C3 plant, Cucumis sativus L. Photosynth Res 94:333–345

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22:131–160

    Article  CAS  Google Scholar 

  • Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence a signature of photosynthesis. Springer, Dordrecht, pp 1–41

    Google Scholar 

  • Griffiths WT (1975) Characterization of the terminal stages of chlorophyll(ide) synthesis in etioplast membrane preparations. Biochem J 152:623–655

    PubMed  CAS  Google Scholar 

  • Guy C (1999) Molecular responses of plants to cold shock and cold acclimation. J Mol Microbiol Biotechnol 1:231–242

    PubMed  CAS  Google Scholar 

  • He Z-H, Li J, Sundqvist C, Timko MP (1994) Leaf developmental age controls expression of genes encoding enzymes of chlorophyll and heme biosynthesis in pea (Pisum sativum). Plant Physiol 106:537–546

    PubMed  CAS  Google Scholar 

  • Henningsen KW, Boardman NK (1973) Development of photochemical activity and the appearance of the high potential form of cytochrome b-559 in greening barley seedlings. Plant Physiol 51:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Hukmani P, Tripathy BC (1994) Chlorophyll biosynthetic reactions during senescence of excised barley (Hordeum vulgare L. cv IB) leaves. Plant Physiol 105:1295–1300

    PubMed  CAS  Google Scholar 

  • Lay PL, Böddi B, Kovacevic D, Juneau P, Dewez D, Popovie R (2001) Spectroscopic analysis of dessication-induced alterations of the chlorophyllide transformation pathway in etiolated barley leaves. Plant Physiol 127:202–211

    Article  PubMed  Google Scholar 

  • Lebedev N, Timko MP (1999) Protochlorophyllide oxidoreductase B-catalysed protochlorophyllide photoreduction in vitro: insight into the mechanism of chlorophyll formation in light-adapted plants. Proc Natl Acad Sci USA 96:9954–9959

    Article  PubMed  CAS  Google Scholar 

  • Lindsten A, Ryberg M, Sundqvist C (1988) The polypeptide composition of highly purified prolamellar bodies and prothylakoids from wheat (Triticum aestivum) as revealed by silver staining. Physiol Plant 72:167–176

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Masuda T, Takamiya K (2004) Novel insights into enzymology, regulation and physiological functions of light-dependant protochlorophyllide oxidoreductase in angiosperms. Photosynth Res 81:1–29

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Fusada N, Shiraishi T, Kuroda H, Awai K, Shimada H, Ohta H, Takamiya K (2002) Identification of two differentially regulated isoforms of protochlorophyllide oxidoreductase (POR) from tobacco revealed a wide variety of lightand development-dependent regulations of POR gene expression among angiosperms. Photosynth Res 74:165–172

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Fusada N, Oosawa N, Takamatsu K, Yamamoto YY, Ohto M, Nakamura K, Goto K, Shibata D, Shirano Y, Hayashi H, Kato T, Tabata S, Shimada H, Ohta H, Takamiya K (2003) Functional analysis of isoforms of NADPH: protochlorophyllide oxidoreductase (POR), PORB and PORC, in Arabidopsis thaliana. Plant Cell Physiol 44:963–974

    Article  PubMed  CAS  Google Scholar 

  • Mohanty P, Vani B, Prakash JS (2002) Elevated temperature treatment induced alteration in thylakoid membrane organization and energy distribution between the two photosystems in Pisum sativum. Z Naturforsch C 57(9–10):836–842

    PubMed  CAS  Google Scholar 

  • Mohanty S, Grimm B, Tripathy BC (2006) Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692–699

    Article  PubMed  CAS  Google Scholar 

  • Mullet JE, Burke JJ, Arntzen CJ (1980) Chlorophyll proteins of photosystem I. Plant Physiol Bethesda 65:814–822

    Article  CAS  Google Scholar 

  • Oelze-Karow H, Butler WL (1971) The development of photophosphorylation and photosynthesis in greening bean leaves. Plant Physiol 48:621–625

    Article  PubMed  CAS  Google Scholar 

  • Oliver RP, Griffiths WT (1982) Pigment–protein complexes of illuminated etiolated leaves. Plant Physiol 70:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, Ohta H, Takamiya K (2000) Identification and light-induced expression of a novel gene of NADPH-potochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Lett 474:133–136

    Article  PubMed  CAS  Google Scholar 

  • Ouazzani Chahdi AM, Schoefs B, Franck F (1998) Isolation and characterization of photoactive complexes of NADPH protochlorophyllide oxidoreductase. Planta 206:673–680

    Article  Google Scholar 

  • Pattanayak GK, Tripathy BC (2002) Catalytic function of a novel protein protochlorophyllide oxidoreductase C of Arabidopsis thaliana. Biochem Biophys Res Commun 291:921–924

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal S, Bukhov NG, Tajmir-Riahi HA, Carpentier R (2003) Control of energy dissipation and photochemical activity in photosystem I by NADP-dependent reversible conformational changes. Biochemistry 42:11839–11845

    Article  PubMed  CAS  Google Scholar 

  • Ryberg M, Artus N, Böddi B, Lindsten A, Wiktorsson B, Sundqvist C (1992) Pigment–protein complexes of chlorophyll precursors. In: Argyrudi-Akoyunoglu JH (ed) Regulation of chloroplast biogenesis. Plenum, New York, pp 217–225

    Chapter  Google Scholar 

  • Santel HJ, Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.). The effect of light on the NADPH:protochlorophyllide oxidoreductase. Eur J Biochem 120:95–103

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B (2001) The protochlorophyllide–chlorophyllide cycle. Photosynth Res 70:257–271

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Franck F (1993) Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. J Exp Bot 44:1053–1057

    Article  CAS  Google Scholar 

  • Schoefs B, Franck F (2003) Protochlorophyllide reduction: mechanism and evolution. Photochem Photobiol 78:543–557

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Garnir HP, Bertrand M (1994) Comparison of the photoreduction protochlorophyllide to chlorophyllide in leaves and cotyledons from dark-grown beans as a function of age. Photosynth Res 41:405–417

    Article  CAS  Google Scholar 

  • Schoefs B, Bertrand M, Franck F (2000a) Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves. Photochem Photobiol 72:85–93

    Article  PubMed  CAS  Google Scholar 

  • Schoefs B, Bertrand M, Franck F (2000b) Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants. Photochem Photobiol 72:660–668

    Article  PubMed  CAS  Google Scholar 

  • Shibata K (1957) Spectroscopic studies of chlorophyll formation in intact leaves. J Biochem Tokyo 44:147–173

    CAS  Google Scholar 

  • Sirnoval C, Brouer M, Michel JM, Kuiper Y (1968) The reduction of protochlorophyllide into chlorophyllide: I. Kinetics of the P657–647 to P688–676 phototransformation. Photosynthetica 2:268–287

    Google Scholar 

  • Smeller L, Solymosi K, Fidy J, Böddi B (2003) Activation parameters of the blue shift (Shibata shift) subsequent to protochlorophyllide phototransformation. Biochim Biophys Acta 1651:130–138

    PubMed  CAS  Google Scholar 

  • Smillie RM, Critchley C, Bain JM, Nott R (1978) Effect of growth temperature on chloroplast structure and activity in barley. Plant Physiol 62:191–196

    Article  PubMed  CAS  Google Scholar 

  • Solymosi K, Böddi B (2006) Optical properties of bud scales and protochlorophyll(ide) forms in leaf primodia of closed and opened buds. Tree Physiol 26:1075–1085

    PubMed  CAS  Google Scholar 

  • Solymosi K, Bóka K, Böddi B (2006) Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26:1087–1096

    PubMed  CAS  Google Scholar 

  • Su Q, Frick G, Armstrong G, Apel K (2001) POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Mol Biol 47:805–813

    Article  PubMed  CAS  Google Scholar 

  • Tewari AK, Tripathy BC (1998) Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiol 117:851–858

    Article  CAS  Google Scholar 

  • Tewari AK, Tripathy BC (1999) Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). Planta 208:431–437

    Article  CAS  Google Scholar 

  • Tripathy BC, Chakraborty N (1991) 5-Aminolevulinic acid induced photodynamic damage of the photosynthetic electron transport chain of cucumber (Cucumis sativus L.) cotyledons. Plant Physiol 96:761–767

    Article  PubMed  CAS  Google Scholar 

  • Wiktorsson B, Engdahl S, Zhong LB, Böddi B, Ryberg M, Sundqvist C (1993) The effect of cross-liking of the subunits of NADPH–protochlorophyllide oxidoreductase of the aggregational state of protochlorophyllide. Photosynthtica 29:205–218

    CAS  Google Scholar 

  • Xin Z, Browse J (1998) Eskimo 1 mutants of Arabidopsis are constitutively freezing tolerant. Proc Natl Acad Sci USA 95:7799–7804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Department of Science and Technology, Government of India (DST/IS-STAC/CO2-SR-34/07) to B.C.T.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baishnab C. Tripathy.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohanty, S., Tripathy, B.C. Early and late plastid development in response to chill stress and heat stress in wheat seedlings. Protoplasma 248, 725–736 (2011). https://doi.org/10.1007/s00709-010-0235-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0235-4

Keywords

Navigation