Skip to main content
Log in

From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Autophagy is an evolutionarily conserved intracellular process for the vacuolar degradation of cytoplasmic constituents. The central structures of this pathway are newly formed double-membrane vesicles (autophagosomes) that deliver excess or damaged cell components into the vacuole or lysosome for proteolytic degradation and monomer recycling. Cellular remodeling by autophagy allows organisms to survive extensive phases of nutrient starvation and exposure to abiotic and biotic stress. Autophagy was initially studied by electron microscopy in diverse organisms, followed by molecular and genetic analyses first in yeast and subsequently in mammals and plants. Experimental data demonstrate that the basic principles, mechanisms, and components characterized in yeast are conserved in mammals and plants to a large extent. However, distinct autophagy pathways appear to differ between kingdoms. Even though direct information remains scarce particularly for plants, the picture is emerging that the signal transduction cascades triggering autophagy and the mechanisms of organelle turnover evolved further in higher eukaryotes for optimization of nutrient recycling. Here, we summarize new research data on nitrogen starvation-induced signal transduction and organelle autophagy and integrate this knowledge into plant physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

ATG:

autophagy

CAT:

catalase

ConcA:

Concanamycin A

Cvt:

cytoplasm-to-vacuole targeting

DEHP:

di-(2-ethylhexyl)phthalate

eIF2:

eukaryotic translation initiation factor-2

ER:

endoplasmic reticulum

FKBP12:

FK506-binding protein 12

GCN2:

general control non-derepressible-2

LBD:

lateral organ boundary domain

3-MA:

3-Methyladenine

mex1:

maltose excess 1 mutant

MIPA:

micropexophagy apparatus

MAPK:

mitogen-activated protein kinase

NLA:

nitrogen limitation adaptation mutant

NLP:

nodule inception-like protein

NR:

nitrate reductase

PAS:

phagophore assembly site/preautophagosomal structure

PCD:

programmed cell death

PTS1:

peroxisome targeting signal type 1

PEX:

peroxin

PI3K:

phosphatidylinositol 3-kinase

PI4P:

phosphatidylinositol 4′-monophosphate

PMP:

peroxisomal membrane protein

RAPTOR:

regulatory associated protein of mTOR

RCB:

Rubisco-containing body

SAV:

senescence-associated vacuole

S6K:

S6 kinase

SNFI:

sucrose non-fermenting kinase 1

SNRK1:

SNF1/AMPK-related kinase

TOR:

target of rapamycin

TORC1/2:

TOR complex 1/2

VPS:

vacuolar protein sorting

References

  • Aksam EB, Koek A, Kiel JA, Jourdan S, Veenhuis M, van der Klei IJ (2007) A peroxisomal lon protease and peroxisome degradation by autophagy play key roles in vitality of Hansenula polymorpha cells. Autophagy 3(2):96–105

    CAS  PubMed  Google Scholar 

  • Aksam EB, de Vries B, van der Klei IJ, Kiel JA (2009) Preserving organelle vitality: peroxisomal quality control mechanisms in yeast. FEMS Yeast Res 9(6):808–820

    Article  CAS  PubMed  Google Scholar 

  • Anderson GH, Veit B, Hanson MR (2005) The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3:12

    Article  PubMed  CAS  Google Scholar 

  • Ano Y, Hattori T, Kato N, Sakai Y (2005a) Intracellular ATP correlates with mode of pexophagy in Pichia pastoris. Biosci Biotechnol Biochem 69(8):1527–1533

    Article  CAS  PubMed  Google Scholar 

  • Ano Y, Hattori T, Oku M, Mukaiyama H, Baba M, Ohsumi Y, Kato N, Sakai Y (2005b) A sorting nexin PpAtg24 regulates vacuolar membrane dynamics during pexophagy via binding to phosphatidylinositol-3-phosphate. Mol Biol Cell 16(2):446–457

    Article  CAS  PubMed  Google Scholar 

  • Asakura M, Ninomiya S, Sugimoto M, Oku M, Yamashita S, Okuno T, Sakai Y, Takano Y (2009) Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell 21(4):1291–1304

    Article  CAS  PubMed  Google Scholar 

  • Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133(6):1251–1263

    Article  CAS  PubMed  Google Scholar 

  • Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J (2007) A central integrator of transcription networks in plant stress and energy signalling. Nature 448(7156):938–942

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC (2007) Plant autophagy—more than a starvation response. Curr Opin Plant Biol 10(6):587–593

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC (2009) Function and regulation of macroautophagy in plants. Biochim Biophys Acta 1793(9):1397–1403

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC, Laporte M, Marty F, Moriyasu Y, Ohsumi Y, Olsen LJ, Yoshimoto K (2006) Autophagy in development and stress responses of plants. Autophagy 2(1):2–11

    CAS  PubMed  Google Scholar 

  • Bellu AR, Komori M, van der Klei IJ, Kiel JA, Veenhuis M (2001) Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem 276(48):44570–44574

    Article  CAS  PubMed  Google Scholar 

  • Bellu AR, Salomons FA, Kiel JA, Veenhuis M, Van Der Klei IJ (2002) Removal of Pex3p is an important initial stage in selective peroxisome degradation in Hansenula polymorpha. J Biol Chem 277(45):42875–42880

    Article  CAS  PubMed  Google Scholar 

  • Bereiter-Hahn J, Voth M (1994) Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc Res Tech 27(3):198–219

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Klionsky DJ (2007) Atg26 is not involved in autophagy-related pathways in Saccharomyces cerevisiae. Autophagy 3(1):17–20

    CAS  PubMed  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13(24):3271–3279

    Article  CAS  PubMed  Google Scholar 

  • Castaings L, Camargo A, Pocholle D, Gaudon V, Texier Y, Boutet-Mercey S, Taconnat L, Renou JP, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A (2009) The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. Plant J 57(3):426–435

    Article  CAS  PubMed  Google Scholar 

  • Castillo MC, Sandalio LM, Del Rio LA, Leon J (2008) Peroxisome proliferation, wound-activated responses and expression of peroxisome-associated genes are cross-regulated but uncoupled in Arabidopsis thaliana. Plant Cell Environ 31(4):492–505

    Article  CAS  PubMed  Google Scholar 

  • Cebollero E, Reggiori F (2009) Regulation of autophagy in yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1793(9):1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Chang T, Schroder LA, Thomson JM, Klocman AS, Tomasini AJ, Stromhaug PE, Dunn WA Jr (2005) PpATG9 encodes a novel membrane protein that traffics to vacuolar membranes, which sequester peroxisomes during pexophagy in Pichia pastoris. Mol Biol Cell 16(10):4941–4953

    Article  CAS  PubMed  Google Scholar 

  • Chiba A, Ishida H, Nishizawa NK, Makino A, Mae T (2003) Exclusion of ribulose-1, 5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat. Plant Cell Physiol 44(9):914–921

    Article  CAS  PubMed  Google Scholar 

  • Chung T, Phillips AR, Vierstra RD (2010) Atg8 lipidation and Atg8-mediated autophagy in Arabidopsis require Atg12 expressed from the differentially controlled Atg12a and Atg12b loci. Plant J 62(3):483–943

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Bassham DC (2010) Increase in catalase-3 activity as a response to use of alternative catabolic substrates during sucrose starvation. Plant Physiol Biochem 48(4):232–238

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to suc starvation. Plant Physiol 135(4):2330–2347

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Xiong Y, Bassham DC (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42(4):598–608

    Article  CAS  PubMed  Google Scholar 

  • Crespo JL, Diaz-Troya S, Florencio FJ (2005) Inhibition of target of rapamycin signaling by rapamycin in the unicellular green alga Chlamydomonas reinhardtii. Plant Physiol 139(4):1736–1749

    Article  CAS  PubMed  Google Scholar 

  • Crozet P, Jammes F, Valot B, Ambard-Bretteville F, Nessler S, Hodges M, Vidal J, Thomas M (2010) Cross-phosphorylation between Arabidopsis thaliana sucrose nonfermenting 1-related protein kinase 1 (AtSnRK1) and its activating kinase (AtSnAK) determines their catalytic activities. J Biol Chem 285(16):12071–12077

    Article  CAS  PubMed  Google Scholar 

  • De Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46(2):323–357

    PubMed  Google Scholar 

  • Deprost D, Truong HN, Robaglia C, Meyer C (2005) An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development. Biochem Biophys Res Commun 326(4):844–850

    Article  CAS  PubMed  Google Scholar 

  • Deretic V (2006) Autophagy as an immune defense mechanism. Curr Opin Immunol 18(4):375–382

    Article  CAS  PubMed  Google Scholar 

  • Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    Article  CAS  PubMed  Google Scholar 

  • Desai M, Hu J (2008) Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome a, the transcription factor hy5 homolog, and the peroxisomal protein peroxin11b. Plant Physiol 146(3):1117–1127

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Troya S, Perez-Perez ME, Florencio FJ, Crespo JL (2008) The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 4(7):851–865

    CAS  PubMed  Google Scholar 

  • Dice JF (2007) Chaperone-mediated autophagy. Autophagy 3(4):295–299

    CAS  PubMed  Google Scholar 

  • Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem 277(36):33105–33114

    Article  CAS  PubMed  Google Scholar 

  • Dunn WA Jr, Cregg JM, Kiel JA, van der Klei IJ, Oku M, Sakai Y, Sibirny AA, Stasyk OV, Veenhuis M (2005) Pexophagy: the selective autophagy of peroxisomes. Autophagy 1(2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Farre JC, Subramani S (2004) Peroxisome turnover by micropexophagy: an autophagy-related process. Trends Cell Biol 14(9):515–523

    Article  CAS  PubMed  Google Scholar 

  • Farre JC, Vidal J, Subramani S (2007) A cytoplasm to vacuole targeting pathway in P. pastoris. Autophagy 3(3):230–234

    CAS  PubMed  Google Scholar 

  • Farre JC, Manjithaya R, Mathewson RD, Subramani S (2008) PpATG30 tags peroxisomes for turnover by selective autophagy. Dev Cell 14(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Farre JC, Krick R, Subramani S, Thumm M (2009) Turnover of organelles by autophagy in yeast. Curr Opin Cell Biol 21(4):522–530

    Article  CAS  PubMed  Google Scholar 

  • Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of rubisco after its enzymatic function in a cell is terminated. J Exp Bot 59(7):1615–1624

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119:355–364

    Article  CAS  Google Scholar 

  • Fujiki Y, Yoshimoto K, Ohsumi Y (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol 143(3):1132–1139

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi T, Matsuura A, Noda T, Ohsumi Y (1997) Analyses of apg13 gene involved in autophagy in yeast, Saccharomyces cerevisiae. Gene 192(2):207–213

    Article  CAS  PubMed  Google Scholar 

  • Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/PARKIN-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12(2):119–131

    Article  CAS  PubMed  Google Scholar 

  • Graham IA, Denby KJ, Leaver CJ (1994) Carbon catabolite repression regulates glyoxylate cycle gene expression in cucumber. Plant Cell 6(5):761–772

    Article  CAS  PubMed  Google Scholar 

  • Hanaoka H, Noda T, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Ohsumi Y (2002) Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129(3):1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Harrison-Lowe NJ, Olsen LJ (2008) Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana. Autophagy 4 (4)

  • Harthill JE, Meek SE, Morrice N, Peggie MW, Borch J, Wong BH, Mackintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. Plant J 47(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  Google Scholar 

  • Herman EM, Baumgartner B, Chrispeels MJ (1981) Uptake and apparent digestion of cytoplasmic organelles by protein bodies (protein storage vacuoles) in mung bean cotyledons. Eur J Cell Biol 24(2):226–235

    CAS  PubMed  Google Scholar 

  • Hey SJ, Byrne E, Halford NG (2010) The interface between metabolic and stress signalling. Annals of Botany 105(2):197–203

    Article  CAS  PubMed  Google Scholar 

  • Himelblau E, Amasino RM (2001) Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol 158(10):1317–1323

    Article  CAS  Google Scholar 

  • Ho CH, Lin SH, Hu HC, Tsay YF (2009) Chl1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194

    Article  CAS  PubMed  Google Scholar 

  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jorgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137(4):773–783

    Article  CAS  PubMed  Google Scholar 

  • Hortensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53(370):927–937

    Article  CAS  PubMed  Google Scholar 

  • Ikeda Y, Koizumi N, Kusano T, Sano H (2000) Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNF1-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem 275(52):41528

    PubMed  Google Scholar 

  • Inoue Y, Suzuki T, Hattori M, Yoshimoto K, Ohsumi Y, Moriyasu Y (2006) AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells. Plant Cell Physiol 47(12):1641–1652

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Yoshimoto K, Izumi M, Reisen D, Yano Y, Makino A, Ohsumi Y, Hanson MR, Mae T (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148(1):142–155

    Article  CAS  PubMed  Google Scholar 

  • Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, Chiba T, Tanaka K, Kominami E (2006) Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem 281(7):4035–4041

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2a reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18(10):2782–2792

    Article  CAS  PubMed  Google Scholar 

  • Journet EP, Bligny R, Douce R (1986) Biochemical changes during sucrose deprivation in higher plant cells. J Biol Chem 261(7):3193–3199

    CAS  PubMed  Google Scholar 

  • Journo D, Mor A, Abeliovich H (2009) Aup1-mediated regulation of Rtg3 during mitophagy. J Biol Chem 284(51):35885–35895

    Article  CAS  PubMed  Google Scholar 

  • Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    Article  CAS  PubMed  Google Scholar 

  • Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150(6):1507–1513

    Article  CAS  PubMed  Google Scholar 

  • Kamigaki A, Mano S, Terauchi K, Nishi Y, Tachibe-Kinoshita Y, Nito K, Kondo M, Hayashi M, Nishimura M, Esaka M (2003) Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor. Plant J 33(1):161–175

    Article  CAS  PubMed  Google Scholar 

  • Kaniuk NA, Kiraly M, Bates H, Vranic M, Volchuk A, Brumell JH (2007) Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 56(4):930–939

    Article  CAS  PubMed  Google Scholar 

  • Kanki T, Klionsky DJ (2010) The molecular mechanism of mitochondria autophagy in yeast. Mol Microbiol 75(4):795–800

    Article  CAS  PubMed  Google Scholar 

  • Kanki T, Wang K, Baba M, Bartholomew CR, Lynch-Day MA, Du Z, Geng J, Mao K, Yang Z, Yen WL, Klionsky DJ (2009) A genomic screen for yeast mutants defective in selective mitochondria autophagy. Mol Biol Cell 20(22):4730–4738

    Article  CAS  PubMed  Google Scholar 

  • Kanki T, Wang K, Klionsky DJ (2010) A genomic screen for yeast mutants defective in mitophagy. Autophagy 6(2):278–280

    Article  CAS  PubMed  Google Scholar 

  • Kaur N, Reumann S, Hu J (2009) Peroxisome biogenesis and function. In: The Arabidopsis book. The American Society of Plant Biologists, pp 1–41. doi:10.1199/tab.0123

  • Kiel JA, Komduur JA, van der Klei IJ, Veenhuis M (2003) Macropexophagy in Hansenula polymorpha: facts and views. FEBS Lett 549(1–3):1–6

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Klionsky DJ (2000) Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annu Rev Biochem 69:303–342

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462(2):245–253

    Article  CAS  PubMed  Google Scholar 

  • Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105(52):20567–20574

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Takano Y, Furusawa I, Okuno T (2001) Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13(8):1945–1957

    Article  CAS  PubMed  Google Scholar 

  • Kissova I, Deffieu M, Manon S, Camougrand N (2004) Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 279(37):39068–39074

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2004) Cell biology: regulated self-cannibalism. Nature 431(7004):31–32

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ (2005) Autophagy. Curr Biol 15(8):R282–R283

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Ohsumi Y (1999) Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15:1–32

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5(4):539–545

    Article  CAS  PubMed  Google Scholar 

  • Koepke JI, Nakrieko KA, Wood CS, Boucher KK, Terlecky LJ, Walton PA, Terlecky SR (2007) Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic 8(11):1590–1600

    Article  CAS  PubMed  Google Scholar 

  • Koepke JI, Wood CS, Terlecky LJ, Walton PA, Terlecky SR (2008) Progeric effects of catalase inactivation in human cells. Toxicol Appl Pharmacol 232(1):99–108

    Article  CAS  PubMed  Google Scholar 

  • Kohda TA, Tanaka K, Konomi M, Sato M, Osumi M, Yamamoto M (2007) Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells 12(2):155–170

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata J, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura S, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Kondo K, Makita T (1997) Inhibition of peroxisomal degradation by 3-methyladenine (3MA) in primary cultures of rat hepatocytes. Anat Rec 247(4):449–454

    Article  CAS  PubMed  Google Scholar 

  • Krouk G, Crawford NM, Coruzzi GM, Tsay YF (2010) Nitrate signaling: adaptation to fluctuating environments. Curr Opin Plant Biol 13(3):266–273

    Article  CAS  PubMed  Google Scholar 

  • Kwok EY, Hanson MR (2004) Stromules and the dynamic nature of plastid morphology. J Microsc 214(Pt 2):124–137

    Article  CAS  PubMed  Google Scholar 

  • Leao AN, Kiel JA (2003) Peroxisome homeostasis in Hansenula polymorpha. FEMS Yeast Res 4(2):131–139

    Article  CAS  PubMed  Google Scholar 

  • Legakis JE, Koepke JI, Jedeszko C, Barlaskar F, Terlecky LJ, Edwards HJ, Walton PA, Terlecky SR (2002) Peroxisome senescence in human fibroblasts. Mol Biol Cell 13(12):4243–4255

    Article  CAS  PubMed  Google Scholar 

  • Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120(2):159–162

    CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7(10):767–777

    Article  CAS  PubMed  Google Scholar 

  • Lillo C (2008) Signalling cascades integrating light-enhanced nitrate metabolism. Biochem J 415(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Lingard MJ, Bartel B (2009) Arabidopsis LON2 is necessary for peroxisomal function and sustained matrix protein import. Plant Physiol 151(3):1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Lingard MJ, Monroe-Augustus M, Bartel B (2009) Peroxisome-associated matrix protein degradation in Arabidopsis. Proc Natl Acad Sci U S A 106(11):4561–4566

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bassham DC (2010) Tor is a negative regulator of autophagy in Arabidopsis thaliana. PLoS Biol (in press)

  • Liu Y, Schiff M, Czymmek K, Talloczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4):567–577

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu YH, Yang JJ, Liu YD, Shen FF (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol 51(1):11–19

    Article  CAS  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. Embo J 19(24):6770–6777

    Article  CAS  PubMed  Google Scholar 

  • Luiken JJ, van den Berg M, Heikoop JC, Meijer AJ (1992) Autophagic degradation of peroxisomes in isolated rat hepatocytes. FEBS Lett 304(1):93–97

    Article  CAS  PubMed  Google Scholar 

  • Mahfouz MM, Kim S, Delauney AJ, Verma DP (2006) Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18(2):477–490

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Osmond B (1991) Effects of nitrogen nutrition on nitrogen partitioning between chloroplasts and mitochondria in pea and wheat. Plant Physiol 96(2):355–362

    Article  CAS  PubMed  Google Scholar 

  • Manjithaya R, Jain S, Farre JC, Subramani S (2010a) A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. J Cell Biol 189(2):303–310

    Article  CAS  Google Scholar 

  • Manjithaya R, Nazarko TY, Farre JC, Subramani S (2010b) Molecular mechanism and physiological role of pexophagy. FEBS Lett 584(7):1367–1373

    Article  CAS  Google Scholar 

  • Martinez DE, Costa ML, Gomez FM, Otegui MS, Guiamet JJ (2008a) ‘senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56(2):196–206

    Article  CAS  Google Scholar 

  • Martinez DE, Costa ML, Guiamet JJ (2008b) Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant biology (Stuttgart, Germany) 1(10 Suppl):15–22

    Article  CAS  Google Scholar 

  • Massey A, Kiffin R, Cuervo AM (2004) Pathophysiology of chaperone-mediated autophagy. Int J Biochem Cell Biol 36(12):2420–2434

    Article  CAS  PubMed  Google Scholar 

  • Matile P (1975) The lytic compartment of plant cells. In: Alfert M, Beermann W, Rudkin G, Sandritter W, Sitte P (eds) In cell biology monographs, vol 1. Springer, Berlin, pp 1–175

    Google Scholar 

  • Matsui M, Yamamoto A, Kuma A, Ohsumi Y, Mizushima N (2006) Organelle degradation during the lens and erythroid differentiation is independent of autophagy. Biochem Biophys Res Commun 339(2):485–489

    Article  CAS  PubMed  Google Scholar 

  • Matsuura A, Tsukada M, Wada Y, Ohsumi Y (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192(2):245–250

    Article  CAS  PubMed  Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3(2):106–116

    CAS  PubMed  Google Scholar 

  • Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002) Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99(9):6422–6427

    Article  CAS  PubMed  Google Scholar 

  • Mijaljica D, Prescott M, Devenish RJ (2007) Different fates of mitochondria: alternative ways for degradation? Autophagy 3(1):4–9

    CAS  PubMed  Google Scholar 

  • Minamikawa T, Toyooka K, Okamoto T, Hara-Nishimura I, Nishimura M (2001) Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing french bean leaves: immunocytochemical and ultrastructural observations. Protoplasma 218(3–4):144–153

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism (*). Annu Rev Nutr 27:19–40

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska I, Klionsky DJ (2006) Autophagy in organelle homeostasis: peroxisome turnover. Mol Aspects Med 27(5–6):483–494

    Article  CAS  PubMed  Google Scholar 

  • Monastryska I, Sjollema K, van der Klei IJ, Kiel JA, Veenhuis M (2004) Microautophagy and macropexophagy may occur simultaneously in Hansenula polymorpha. FEBS Lett 568(1–3):135–138

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska I, Kiel JA, Krikken AM, Komduur JA, Veenhuis M, van der Klei IJ (2005) The Hansenula polymorpha ATG25 gene encodes a novel coiled-coil protein that is required for macropexophagy. Autophagy 1(2):92–100

    Article  CAS  PubMed  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111(4):1233–1241

    CAS  PubMed  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44(8):795–802

    Article  CAS  PubMed  Google Scholar 

  • Mukaiyama H, Oku M, Baba M, Samizo T, Hammond AT, Glick BS, Kato N, Sakai Y (2002) Paz2 and 13 other PAZ gene products regulate vacuolar engulfment of peroxisomes during micropexophagy. Genes Cells 7(1):75–90

    Article  CAS  PubMed  Google Scholar 

  • Mukaiyama H, Baba M, Osumi M, Aoyagi S, Kato N, Ohsumi Y, Sakai Y (2004) Modification of a ubiquitin-like protein Paz2 conducted micropexophagy through formation of a novel membrane structure. Mol Biol Cell 15(1):58–70

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467

    Article  CAS  PubMed  Google Scholar 

  • Narendra D, Tanaka A, Suen DF, Youle RJ (2008) PARKIN is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803

    Article  CAS  PubMed  Google Scholar 

  • Natesan SK, Sullivan JA, Gray JC (2005) Stromules: a characteristic cell-specific feature of plastid morphology. J Exp Bot 56(413):787–797

    Article  CAS  PubMed  Google Scholar 

  • Nazarko TY, Farre JC, Polupanov AS, Sibirny AA, Subramani S (2007a) Autophagy-related pathways and specific role of sterol glucoside in yeasts. Autophagy 3(3):263–265

    CAS  PubMed  Google Scholar 

  • Nazarko TY, Polupanov AS, Manjithaya RR, Subramani S, Sibirny AA (2007b) The requirement of sterol glucoside for pexophagy in yeast is dependent on the species and nature of peroxisome inducers. Mol Biol Cell 18(1):106–118

    Article  CAS  PubMed  Google Scholar 

  • Nazarko VY, Futej KO, Thevelein JM, Sibirny AA (2008a) Differences in glucose sensing and signaling for pexophagy between the baker’s yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. Autophagy 4(3):381–384

    CAS  PubMed  Google Scholar 

  • Nazarko VY, Thevelein JM, Sibirny AA (2008b) G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int 32(5):502–504

    Article  CAS  PubMed  Google Scholar 

  • Nazarko TY, Farre JC, Subramani S (2009) Peroxisome size provides insights into the function of autophagy-related proteins. Mol Biol Cell 20(17):3828–3839

    Article  CAS  PubMed  Google Scholar 

  • Niittyla T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303(5654):87–89

    Article  PubMed  CAS  Google Scholar 

  • Niwa Y, Kato T, Tabata S, Seki M, Kobayashi M, Shinozaki K, Moriyasu Y (2004) Disposal of chloroplasts with abnormal function into the vacuole in Arabidopsis thaliana cotyledon cells. Protoplasma 223(2–4):229–232

    PubMed  Google Scholar 

  • Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, Raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2(3):211–216

    Article  CAS  PubMed  Google Scholar 

  • Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor ATG32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17(1):87–97

    Article  CAS  PubMed  Google Scholar 

  • Oku M, Warnecke D, Noda T, Muller F, Heinz E, Mukaiyama H, Kato N, Sakai Y (2003) Peroxisome degradation requires catalytically active sterol glucosyltransferase with a GRAM domain. Embo J 22(13):3231–3241

    Article  CAS  PubMed  Google Scholar 

  • Oshima Y, Kamigaki A, Nakamori C, Mano S, Hayashi M, Nishimura M, Esaka M (2008) Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import. Plant Cell Physiol 49(4):671–677

    Article  CAS  PubMed  Google Scholar 

  • Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9(4):359–366

    Article  CAS  PubMed  Google Scholar 

  • Otegui MS, Noh YS, Martinez DE, Vila Petroff MG, Staehelin LA, Amasino RM, Guiamet JJ (2005) Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. Plant J 41(6):831–844

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282(33):24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Dinesh-Kumar SP (2008) Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4(1):20–27

    CAS  PubMed  Google Scholar 

  • Peng M, Bi YM, Zhu T, Rothstein SJ (2007) Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA. Plant Mol Biol 65(6):775–797

    Article  CAS  PubMed  Google Scholar 

  • Phillips AR, Suttangkakul A, Vierstra RD (2008) The ATG12-conjugating enzyme ATG10 is essential for autophagic vesicle formation in Arabidopsis thaliana. Genetics 178(3):1339–1353

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Thomas M (2007) SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 12(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Price VE, Sterling WR, Tarantola VA, Hartley RW Jr, Rechcigl M Jr (1962) The kinetics of catalase synthesis and destruction in vivo. J Biol Chem 237:3468–3475

    CAS  PubMed  Google Scholar 

  • Prins A, van Heerden PD, Olmos E, Kunert KJ, Foyer CH (2008) Cysteine proteinases regulate chloroplast protein content and composition in tobacco leaves: a model for dynamic interactions with ribulose-1, 5-bisphosphate carboxylase/oxygenase (rubisco) vesicular bodies. J Exp Bot 59(7):1935–1950

    Article  CAS  PubMed  Google Scholar 

  • Purdue PE, Lazarow PB (1996) Targeting of human catalase to peroxisomes is dependent upon a novel COOH-terminal peroxisomal targeting sequence. J Cell Biol 134(4):849–862

    Article  CAS  PubMed  Google Scholar 

  • Qin G, Ma Z, Zhang L, Xing S, Hou X, Deng J, Liu J, Chen Z, Qu LJ, Gu H (2007) Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development. Cell Res 17(3):249–263

    CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15(3):249–256

    Article  CAS  PubMed  Google Scholar 

  • Reddy JK, Lalwai ND (1983) Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. Crit Rev Toxicol 12(1):1–58

    Article  CAS  PubMed  Google Scholar 

  • Reumann S, Weber AP (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C2 cycle have become filled—others remain. Biochim Biophys Acta 1763(12):1496–1510

    Article  CAS  PubMed  Google Scholar 

  • Robinson DG, Galili G, Herman E, Hillmer S (1998) Topical aspects of vacuolar protein transport: autophagy and prevacuolar compartments. J Exp Bot 49(325):1263–1270

    Article  CAS  Google Scholar 

  • Roetzer A, Gratz N, Kovarik P, Schuller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12(2):199–216

    Article  CAS  PubMed  Google Scholar 

  • Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F (2006) Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell 98(1):53–67

    Article  CAS  PubMed  Google Scholar 

  • Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21(11):3567–3584

    Article  CAS  PubMed  Google Scholar 

  • Sakai Y, Oku M, van der Klei IJ, Kiel JA (2006) Pexophagy: autophagic degradation of peroxisomes. Biochim Biophys Acta 1763(12):1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W (2006) Protein degradation machineries in plastids. Annu Rev Plant Biol 57:599–621

    Article  CAS  PubMed  Google Scholar 

  • Scott SV, Nice DC 3rd, Nau JJ, Weisman LS, Kamada Y, Keizer-Gunnink I, Funakoshi T, Veenhuis M, Ohsumi Y, Klionsky DJ (2000) Apg13p and Vac8p are part of a complex of phosphoproteins that are required for cytoplasm to vacuole targeting. J Biol Chem 275(33):25840–25849

    Article  CAS  PubMed  Google Scholar 

  • Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79(6):1889–1892

    Article  CAS  PubMed  Google Scholar 

  • Shen W, Reyes MI, Hanley-Bowdoin L (2009) Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiol 150(2):996–1005

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ (2004) Autophagy in health and disease: a double-edged sword. Science 306(5698):990–995

    Article  CAS  PubMed  Google Scholar 

  • Slavikova S, Shy G, Yao Y, Glozman R, Levanony H, Pietrokovski S, Elazar Z, Galili G (2005) The autophagy-associated ATG8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants. J Exp Bot 56(421):2839–2849

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Curr Opin Plant Biol 13(3):274–279

    Article  CAS  PubMed  Google Scholar 

  • Sormani R, Yao L, Menand B, Ennar N, Lecampion C, Meyer C, Robaglia C (2007) Saccharomyces cerevisiae FKBP12 binds Arabidopsis thaliana TOR and its expression in plants leads to rapamycin susceptibility. BMC Plant Biol 7:26

    Article  PubMed  CAS  Google Scholar 

  • Stettler M, Eicke S, Mettler T, Messerli G, Hortensteiner S, Zeeman SC (2009) Blocking the metabolism of starch breakdown products in Arabidopsis leaves triggers chloroplast degradation. Mol Plant 2(6):1233–1246

    Article  CAS  PubMed  Google Scholar 

  • Subramani S (1998) Components involved in peroxisome import, biogenesis, proliferation, turnover, and movement. Physiol Rev 78(1):171–188

    CAS  PubMed  Google Scholar 

  • Sugden C, Donaghy PG, Halford NG, Hardie DG (1999) Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme a reductase, nitrate reductase, and sucrose phosphate synthase in vitro. Plant Physiol 120(1):257–274

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Ohsumi Y (2010) Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett 584(7):1280–1286

    Article  CAS  PubMed  Google Scholar 

  • Suzuki NN, Yoshimoto K, Fujioka Y, Ohsumi Y, Inagaki F (2005) The crystal structure of plant ATG12 and its biological implication in autophagy. Autophagy 1(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Svoboda D, Reddy J (1972) Microbodies in experimentally altered cells. IX. The fate of microbodies. Am J Pathol 67(3):541–554

    CAS  PubMed  Google Scholar 

  • Swanson SJ, Bethke PC, Jones RL (1998) Barley aleurone cells contain two types of vacuoles. Characterization of lytic organelles by use of fluorescent probes. Plant Cell 10(5):685–698

    Article  CAS  PubMed  Google Scholar 

  • Takano Y, Asakura M, Sakai Y (2009) Atg26-mediated pexophagy and fungal phytopathogenicity. Autophagy 5(7):1041–1042

    Article  PubMed  Google Scholar 

  • Takatsuka C, Inoue Y, Matsuoka K, Moriyasu Y (2004) 3-Methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions. Plant Cell Physiol 45(3):265–274

    Article  CAS  PubMed  Google Scholar 

  • Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282(8):5617–5624

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A (2010) PARKIN-mediated selective mitochondrial autophagy, mitophagy: PARKIN purges damaged organelles from the vital mitochondrial network. FEBS Lett 584(7):1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Terlecky SR, Koepke JI, Walton PA (2006) Peroxisomes and aging. Biochim Biophys Acta 1763(12):1749–1754

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  Google Scholar 

  • Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, Veenhuis M, Wolf DH (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349(2):275–280

    Article  CAS  PubMed  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2001) Cotyledon cells of vigna mungo seedlings use at least two distinct autophagic machineries for degradation of starch granules and cellular components. J Cell Biol 154(5):973–982

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333(1–2):169–174

    Article  CAS  PubMed  Google Scholar 

  • Tuttle DL, Dunn WA Jr (1995) Divergent modes of autophagy in the methylotrophic yeast Pichia pastoris. J Cell Sci 108(Pt 1):25–35

    CAS  PubMed  Google Scholar 

  • Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446

    Article  CAS  PubMed  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H, Broach JR, De Virgilio C, Hall MN, Loewith R (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26(5):663–674

    Article  CAS  PubMed  Google Scholar 

  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141(2):776–792

    Article  PubMed  CAS  Google Scholar 

  • Van der Wilden W, Herman EM, Chrispeels MJ (1980) Protein bodies of mung bean cotyledons as autophagic organelles. Proc Natl Acad Sci U S A 77(1):428–432

    Article  PubMed  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312(5773):580–583

    Article  CAS  PubMed  Google Scholar 

  • Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149(2):885–893

    Article  CAS  PubMed  Google Scholar 

  • Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Xing X, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NTR1.1. Plant Physiol 151(1):472–478

    Article  CAS  PubMed  Google Scholar 

  • Weaver LM, Amasino RM (2001) Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants. Plant Physiol 127(3):876–886

    Article  CAS  PubMed  Google Scholar 

  • Wittenbach VA, Lin W, Hebert RR (1982) Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves. Plant Physiol 69(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42(4):535–546

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Bassham DC (2007a) Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3(3):257–258

    CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007b) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Oku M, Wasada Y, Ano Y, Sakai Y (2006) PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol 173(5):709–717

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Oku M, Sakai Y (2007) Functions of PI4P and sterol glucoside are necessary for the synthesis of a nascent membrane structure during pexophagy. Autophagy 3(1):35–37

    CAS  PubMed  Google Scholar 

  • Yang Z, Klionsky DJ (2009) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22(2):124–131

    Article  PubMed  CAS  Google Scholar 

  • Yip CK, Murata K, Walz T, Sabatini DM, Kang SA (2010) Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 38(5):768–774

    Article  CAS  PubMed  Google Scholar 

  • Yokota S (1986) Quantitative immunocytochemical studies on differential induction of serine:pyruvate aminotransferase in mitochondria and peroxisomes of rat liver cells by administration of glucagon or di-(2-ethylhexyl)phthalate. Histochemistry 85(2):145–155

    Article  CAS  PubMed  Google Scholar 

  • Yokota S (2003) Degradation of normal and proliferated peroxisomes in rat hepatocytes: regulation of peroxisomes quantity in cells. Microsc Res Tech 61(2):151–160

    Article  CAS  PubMed  Google Scholar 

  • Yokota S, Himeno M, Roth J, Brada D, Kato K (1993) Formation of autophagosomes during degradation of excess peroxisomes induced by di-(2-ethylhexyl)phthalate treatment. II. Immunocytochemical analysis of early and late autophagosomes. Eur J Cell Biol 62(2):372–383

    CAS  PubMed  Google Scholar 

  • Yorimitsu T, He C, Wang K, Klionsky DJ (2009) Tap42-associated protein phosphatase type 2a negatively regulates induction of autophagy. Autophagy 5(5):616–624

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16(11):2967–2983

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9):2914–2927

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304(5676):1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Wan F, Dutta S, Welsh S, Liu Z, Freundt E, Baehrecke EH, Lenardo M (2006) Autophagic programmed cell death by selective catalase degradation. Proc Natl Acad Sci U S A 103(13):4952–4957

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Tuttle DL, Shi YJ, Ralph GS, Dunn WA Jr (1997) Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase. J Cell Sci 110(Pt 16):1935–1945

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang Y, Kanyuka K, Parry MA, Powers SJ, Halford NG (2008) GCN2-dependent phosphorylation of eukaryotic translation initiation factor-2alpha in Arabidopsis. J Exp Bot 59(11):3131–3141

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Primavesi LF, Jhurreea D, Andralojc PJ, Mitchell RA, Powers SJ, Schluepmann H, Delatte T, Wingler A, Paul MJ (2009) Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol 149(4):1860–1871

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S (2008) The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 105(33):12022–12027

    Article  CAS  PubMed  Google Scholar 

  • Ziviani E, Tao RN, Whitworth AJ (2010) Drosophila PARKIN requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc Natl Acad Sci U S A 107(11):5018–5023

    Article  CAS  PubMed  Google Scholar 

  • Zutphen T, Veenhuis M, van der Klei IJ (2008) Pex14 is the sole component of the peroxisomal translocon that is required for pexophagy. Autophagy 4(1):63–66

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Diane Bassham and the autophagy team of the Subramani laboratory (Andreas Till, Jean-Claude Farré, Taras Nazarko, Ravi Manjithaya, and Ronak Lakhani) for critical reading of the manuscript and valuable suggestions. The authors were supported by and acknowledge UiS funding (SR and CL) and funding from the Russian Foundation for Basic Research, grant #10-04-01186 (OV).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrun Reumann.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reumann, S., Voitsekhovskaja, O. & Lillo, C. From signal transduction to autophagy of plant cell organelles: lessons from yeast and mammals and plant-specific features. Protoplasma 247, 233–256 (2010). https://doi.org/10.1007/s00709-010-0190-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0190-0

Keywords

Navigation