Skip to main content
Log in

Neurogenesis and neurite outgrowth in the spinal cord of chicken embryos and in primary cultures of spinal neurons following knockdown of Class III beta tubulin with antisense morpholinos

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Microtubules are the primary cytoskeletal constituent of extending neurites. We used antisense morpholinos to knock down expression of neuron-specific Class III beta tubulin in the right half of the neural tube of chicken embryos in ovo. There was a significant (p < 0.01) reduction in the number of Class III beta tubulin immunostained interneurons 24 h following electroporation of the morpholinos when compared with the contralateral side of the neural tube. However, neural crest-derived sensory neurons labeled with the fluorescently tagged morpholinos developed distinct processes. Moreover, there was no significant difference in the number of interneurons labeled on either side of the neural tube with a second marker of developing neurons, anti-microtubule associated protein (MAP) 1b. Neural tubes were also excised and dissociated following antisense or control morpholino electroporation. The resulting neurons were cultured for 48 h and immunostained with anti-Class III beta tubulin and anti-MAP 1b. Neurons that had taken up the antisense morpholino had significantly shorter neurites (p < 0.01) than neurons from the same neural tubes that did not; they also had significantly shorter neurites (p < 0.05) than labeled neurons from neural tubes electroporated with a control morpholino. Thus, normal expression of Class III beta tubulin may not be necessary for neurogenesis in the early avian spinal cord in situ, but is required for neurite outgrowth in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Banerjee A, Roach MC, Trcka P, Ludueña RF (1990) Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of beta-tubulin. J Biol Chem 265:1794–1799

    PubMed  CAS  Google Scholar 

  • Burkhart CA, Kavallaris M, Band Horwitz S (2001) The role of beta-tubulin isotypes in resistance to antimitotic drugs. Biochim Biophys Acta 1471:1–9

    Google Scholar 

  • Easter SS Jr, Ross LS, Frankfurter A (1993) Initial tract formation in the mouse brain. J Neurosci 13:285–299

    PubMed  Google Scholar 

  • Emery DL, Royo NC, Fischer I, Saatman KE, McIntosh TK (2003) Plasticity following injury to the adult central nervous system: is recapitulation of a developmental state worth promoting? J Neurotrauma 20:1271–1292

    Article  PubMed  Google Scholar 

  • Ferreira A, Caceres A (1992) Expression of the class III beta-tubulin isotype in developing neurons in culture. J Neurosci Res 32:516–529

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Weeks PR, Fischer I (2000) MAP1B expression and microtubule stability in growing and regenerating axons. Microsc Res Tech 48:63–74

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  • Hoyle HD, Raff EC (1990) Two Drosophila beta tubulin isoforms are not functionally equivalent. J Cell Biol 111:1009–1026

    Article  PubMed  CAS  Google Scholar 

  • Kos R, Tucker RP, Hall R, Duong TD, Erickson CA (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226:470–477

    Article  PubMed  CAS  Google Scholar 

  • Kotze AC, Bagnall NH (2006) RNA interference in Haemonchus contortus: suppression of beta-tubulin gene expression in L3, L4 and adult worms in vitro. Mol Biochem Parasitol 145:101–110

    Article  PubMed  CAS  Google Scholar 

  • Lee MK, Tuttle JB, Rebhun LI, Cleveland DW, Frankfurter A (1990) The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil Cytoskeleton 17:118–132

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Geisert EE, Frankfurter A, Spano AJ, Jiang CX, Yue J, Dragatsis I, Goldowitz D (2007) A transgenic mouse class-III beta tubulin reporter using yellow fluorescent protein. Genesis 45:560–569

    Article  PubMed  CAS  Google Scholar 

  • Lu Q, Luduena RF (1993) Removal of beta III isotype enhances taxol induced microtubule assembly. Cell Struct Funct 18:173–182

    Article  PubMed  CAS  Google Scholar 

  • Ludueña RF (1993) Are tubulin isotypes functionally significant. Mol Biol Cell 4:445–447

    PubMed  Google Scholar 

  • Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  Google Scholar 

  • Moskowitz PF, Smith R, Pickett J, Frankfurter A, Oblinger MM (1993) Expression of the class III beta-tubulin gene during axonal regeneration of rat dorsal root ganglion neurons. J Neurosci Res 34:129–134

    Article  PubMed  CAS  Google Scholar 

  • Murashov AK, Chintalgattu V, Islamov RR, Lever TE, Pak ES, Sierpinski PL, Katwa LC, Van Scott MR (2007) RNAi pathway is functional in peripheral nerve axons. FASEB J 21:656–670

    Article  PubMed  CAS  Google Scholar 

  • Oakley BR, Akkari YN (1999) Gamma-tubulin at ten: progress and prospects. Cell Struct Funct 24:365–372

    Article  PubMed  CAS  Google Scholar 

  • Smith CL (1994) The initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules. J Cell Biol 127:1407–1418

    Article  PubMed  CAS  Google Scholar 

  • Srayko M, Kaya A, Stamford J, Hyman AA (2005) Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo. Dev Cell 9:223–236

    CAS  Google Scholar 

  • Tommasi S, Mangia A, Lacalamita R, Bellizzi A, Fedele V, Chiriatti A, Thomssen C, Kendzierski N, Latorre A, Lorusso V, Schittulli F, Zito F, Kavallaris M, Paradiso A (2007) Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins. Int J Cancer 120:2078–2085

    Article  PubMed  CAS  Google Scholar 

  • Tucker RP (2001) Abnormal neural crest cell migration after the in vivo knockdown of tenascin-C expression with morpholino antisense oligonucleotides. Dev Dyn 222:115–119

    Article  PubMed  CAS  Google Scholar 

  • Tucker RP, Binder LI, Matus AI (1988) Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J Comp Neurol 271:44–55

    Article  PubMed  CAS  Google Scholar 

  • Umezu T, Shibata K, Kajiyama H, Terauchi M, Ino K, Nawa A, Kikkawa F (2008) Taxol resistance among the different histological subtypes of ovarian cancer may be associated with the expression of class III beta-tubulin. Int J Gynecol Pathol 27:207–212

    PubMed  Google Scholar 

  • Yuba-Kubo A, Kubo A, Hata M, Tsukita S (2005) Gene knockout analysis of two gamma-tubulin isoforms in mice. Dev Biol 282:361–373

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, R.P., Tran, H. & Gong, Q. Neurogenesis and neurite outgrowth in the spinal cord of chicken embryos and in primary cultures of spinal neurons following knockdown of Class III beta tubulin with antisense morpholinos. Protoplasma 234, 97–101 (2008). https://doi.org/10.1007/s00709-008-0021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-008-0021-8

Keywords

Navigation