Skip to main content

Advertisement

Log in

The effect of bupivacaine·HCl on the physical properties of neuronal membranes

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Fluorescent probe techniques were used to evaluate the effect of bupivacaine·HCl on the physical properties (transbilayer asymmetric lateral and rotational mobilities, annular lipid fluidity and protein distribution) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. An experimental procedure was used based on selective quenching of both 1,3-di(1-pyrenyl)propane (Py-3-Py) and 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups, and radiationless energy transfer (RET) from the tryptophans of membrane proteins to Py-3-Py. Bupivacaine·HCl increased the bulk lateral and rotational mobilities, and annular lipid fluidity in SPMVs lipid bilayers, and had a greater fluidizing effect on the inner monolayer than that of the outer monolayer. The magnitude of increasing effect on annular lipid fluidity in SPMVs lipid bilayer induced by bupivacaine·HCl was significantly far greater than magnitude of increasing effect of the drug on the lateral and rotational mobilities of bulk SPMVs lipid bilayer. It also caused membrane proteins to cluster. These effects of bupivacaine·HCl on neuronal membranes may be responsible for some, though not all, of the local anesthetic actions of bupivacaine·HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

DPH:

1,6-diphenyl-1,3,5-hexatriene

Hepes:

N-2-hydroxyethyl-piperazine-N′-2-ethanesulfonic acid

Py-3-Py:

1,3-di(1-pyrenyl)propane

RET:

radiationless energy transfer

SPMVs:

synaptosomal plasma membrane vesicles

TNBS:

2,4,6-trinitrobenzenesulfonic acid

References

  • Avdulov NA, Wood WG, Harris KA (1994) Effects of ethanol on structural parameters of rat brain membranes: relationship to genetic differences in ethanol sensitivity. Alcohol Clin Exp Res 18:53–59

    Article  PubMed  CAS  Google Scholar 

  • Avdulov NA, Chochina SV, Dvaski LJ, Deitrich RA, Wood WG (1995) Chronic alcohol consumption alters effects of ethanol in vitro on brain membrane structure of high alcohol sensitivity and low alcohol sensitivity rats. Alcohol Clin Exp Res 19:886–891

    Article  PubMed  CAS  Google Scholar 

  • Bae MK, Jeong DK, Park NS, Lee CH, Cho BH, Jang HO, Yun I (2005) The effect of ethanol on the physical properties of neuronal membranes. Mol Cells 19:356–364

    PubMed  CAS  Google Scholar 

  • Balcar VJ, Borg J, Robert J, Mandel P (1980) Uptake of l-glutamate and taurine in neuroblastoma cells with altered fatty acid composition of membrane phospholipids. J Neurochem 34:1678–1681

    Article  PubMed  CAS  Google Scholar 

  • Butterworth JF, Strichartz GR (1990) Molecular mechanisms of local anesthesia (review). Anesthesiology 72:711–734

    Article  PubMed  CAS  Google Scholar 

  • Carricre B, Le Grimellec C (1986) Effects of benzyl alcohol on enzyme activities and d-glucose transport in kidney brush border membranes. Biochim Biophys Acta 857:131–138

    Article  Google Scholar 

  • Chong PIG, Fortes PAG, Jameson DM (1985) Mechanism of inhibition of NaK-ATPase by hydrostatic pressure studies with fluorescence probes. J Biol Chem 260:14484–14490

    PubMed  CAS  Google Scholar 

  • Dipple I, Houslay MD (1978) The activity of glucagon-stimulated adenylate cyclase from rat liver plasma membranes is modulated by the fluidity of its lipid component. Biochem J 174:179–190

    PubMed  CAS  Google Scholar 

  • Dobretsov GE, Spirin MM, Chekrygin OV, Karamansky IM, Dmitriev VM, Vladimirov YA (1982) A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim Biophys Acta 710:172–180

    PubMed  CAS  Google Scholar 

  • Green DE, Fry M, Blondin GA (1980) Phospholipids as the molecular instruments of ion and solute transport in biological membranes. Proc Natl Acad Sci U S A 77:257–261

    Article  PubMed  CAS  Google Scholar 

  • Greenberg M, Tsong TY (1982) Binding of quinacrine, a fluorescent local anesthetic probe, to mammalian axonal membranes. Evidence for a local anesthetic receptor site. J Biol Chem 257:8964–8971

    PubMed  CAS  Google Scholar 

  • Greenberg M, Tsong TY (1984) Detergent solubilization and affinity purification of a local anesthetic binding protein from mammalian axonal membranes. J Biol Chem 259:13241–13245

    PubMed  CAS  Google Scholar 

  • Jang HO, Jeong DK, Ahn SH, Yoon CD, Jeong SC, Jin SD, Yun I (2004a) Effects of chlorpromazine·HCl on the structural parameters of bovine brain membranes. J Biochem Mol Biol 37:603–611

    CAS  Google Scholar 

  • Jang HO, Shin HG, Yun I (2004b) Effects of dimyristoylphosphatidylethanol on the structural parameters of neuronal membranes. Mol Cells 17:485–491

    CAS  Google Scholar 

  • Kang JS, Choi ChM, Yun I (1996) Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured mouse myeloma cell line Sp2/0-Ag14. Biochim Biophys Acta 1281:157–163

    Article  PubMed  Google Scholar 

  • Lee AG (1976) Model for action of local anesthetics. Nature 262:545–548

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Park NS, Kwon JD, Park JS, Shin GB, Lee CS, Jung TS, Choi NJ, Yoon JH, Ok JS, Yoon UC, Bae MK, Jang HO, Yun I (2007) Amphiphilic effects of dicucaine·HCl on rotational mobility of n-(9-anthroyloxy)stearic acid in neuronal and model membranes. Chem Phys Lipids 146:33–42

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim Di, Mun H, Lee SK, Park JS, Kim JH, Lee JH, Park YH, Jeon YC, Yoon UC, Bae MK, Jang HO, Yun I (2008) The effect of propoxycaine HCl on the physical properties of neuronal membranes. Chem Phys Lipids 154:19–25

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Miller KW, Braswell LM, Firestone LL, Dodson BA, Forman SA (1986) In: Roth H (ed) Molecular and cellular mechanisms of anesthetics. Plenum, New York, pp 157–171

  • Mitchell EW (1982) Local anesthetics. In: Allyn A, Hoos A, McKearn J, Najarian D (eds) Accepted dental therapeutics. The Council on Dental Therapeutics of the American Dental Association, Chicago, pp 145–165

    Google Scholar 

  • Mizogami M, Tsuchiya H, Harada J (2002) Membrane effects of ropivacaine compared with those of bupivacaine and mepivacaine. Fundam Clin Pharmacol 16:325–330

    Article  PubMed  CAS  Google Scholar 

  • Schroeder F (1978) Differences in fluidity between bilayer halves of tumour cell plasma membranes. Nature 276:528–530

    Article  PubMed  CAS  Google Scholar 

  • Schachter D (1984) Fluidity and function of hepatocyte plasma membranes. Hepatology 4:140–151

    Article  PubMed  CAS  Google Scholar 

  • Schroder F, Morrison WJ, Gorka C, Wood WG (1988) Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochim Biophys Acta 946:85–94

    Article  Google Scholar 

  • Schroeder F, Kier AB, Sweet WD (1990) Role of polyunsaturated fatty acids and lipid peroxidation in LM fibroblast plasma membrane transbilayer structure. Arch Biochem Biophys 276:55–64

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:585–655

    Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A 71:4457–4461

    Article  PubMed  CAS  Google Scholar 

  • Singer MA (1977) Interaction of dibucaine and propanol with phospholipid bilayer membranes-effect of alterations in fatty acyl composition. Biochem Pharmacol 26:51–57

    Article  PubMed  CAS  Google Scholar 

  • Smith ICP, Auger M, Jarrell HC (1991) Molecular details on anesthetic-lipid interaction. Ann N Y Acad Sci 625:668–684

    Article  PubMed  CAS  Google Scholar 

  • Strichartz GR (1973) The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol 62:37–57

    Article  CAS  PubMed  Google Scholar 

  • Strichartz GR, Richie JM (1987) The action of local anesthetics on ion channels of excitable tissues. In: Strichartz GR (ed) Local anesthetics. Springer, New York, pp 21–52

    Google Scholar 

  • Stubbs CD, Rubin E (1993) Molecular mechanisms of ethanol and anesthetics actions: lipid and protein-based theories. In: Alling C, Diamond I, Leslie SW, Sun GY, Wood WG (eds) Alcohols, cell membranes, and signal transductions in brain. Plenum, New York, pp 1–11

    Google Scholar 

  • Stubbs CD, Williams BW (1992) Fluorescence in membranes. In: Lakowicz JR (ed) Fluorescence spectroscopy in biochemistry, Vol. III. Plenum, New York, pp 231–263

    Google Scholar 

  • Sweet WD, Wood WG, Schroeder F (1987) Charged anesthetics selectively alter plasma membrane order. Biochemistry 26:2827–2835

    Article  Google Scholar 

  • Tsuchia H, Mizogami M, Takakura K (2005) Reversed-phase liquid chromatographic retention and membrane activity relationships of local anesthetics. J Chromatogr A 1073:303–308

    Article  CAS  Google Scholar 

  • Wood WG, Schroder F (1988) Membrane effects of ethanol: bulk lipid versus lipid domains. Life Sci 43:467–475

    Article  PubMed  CAS  Google Scholar 

  • Wood WG, Gorka D, Schroeder F (1989) Acute and chronic effects of ethanol on transbilayer membrane domains. J Neurochem 52:1925–1930

    Article  PubMed  CAS  Google Scholar 

  • Yagiela JA (1986) Local anesthetics. In: Neidle EA, Yagiela JA (eds) Pharmacology and therapeutics for dentistry. Mosby, Philadelphia, pp 230–248

    Google Scholar 

  • Yun I, Kang JS (1990) The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol Cells 1:15–20

    CAS  Google Scholar 

  • Yun I, Han SK, Baek SW, Kim NH, Kang JS, Chung IK, Lee EJ (1987) Effects of local anesthetics on the fluidity of synaptosomal plasma membrane vesicles isolated from bovine brain. Korean J Pharmacol 24:43–52

    Google Scholar 

  • Yun I, Kim YS, Yu SH, Chung IK, Kim IS, Baik SW, Cho GJ, Chung YZ, Kim SH, Kang JS (1990) Comparison of several procedures for the preparation of synaptosomal plasma membrane vesicles. Arch Pharm Res 13:325–329

    Article  Google Scholar 

  • Yun I, Yang MS, Kim IS, Kang JS (1993) Bulk vs. transbilayer effects of ethanol on the fluidity of the plasma membrane vesicles of cultured Chinese hamster ovary cells. Asia Pacific J Pharmacol 8:9–16

    CAS  Google Scholar 

  • Yun I, Lee SH, Kang JS (1994) Effects of ethanol on lateral and rotational mobility of plasma membrane vesicles isolated from cultured Mar 18.5 hybridoma cells. J Membr Biol 138:221–227

    PubMed  CAS  Google Scholar 

  • Yun I, Cho ES, Jang HO, Kim UK, Choi CH, Chung IK, Kim IS, Wood WG (2002) Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. Biochim Biophys Acta 1564:123–132

    Article  PubMed  CAS  Google Scholar 

  • Zachariasse KA, Vaz WLC, Stomayer C, Kühnle W (1982) Investigation of human erythrocyte ghost membranes with intramolecular excimer probes. Biochim Biophys Acta 688:323–332

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koo, K.I., Bae, J.H., Lee, C.H. et al. The effect of bupivacaine·HCl on the physical properties of neuronal membranes. Protoplasma 234, 3–12 (2008). https://doi.org/10.1007/s00709-008-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-008-0017-4

Keywords

Navigation