, Volume 227, Issue 2–4, pp 147–153 | Cite as

Colchicine-induced polyploidization depends on tubulin polymerization in c-metaphase cells

  • A. D. CapertaEmail author
  • M. Delgado
  • F. Ressurreição
  • A. Meister
  • R. N. Jones
  • W. Viegas
  • A. Houben


The microtubule cytoskeleton plays a crucial role in the cell cycle and in mitosis. Colchicine is a microtubule-depolymerizing agent that has long been used to induce chromosome individualization in cells arrested at metaphase and also in the induction of polyploid plants. Although attempts have been made to explain the processes and mechanisms underlying polyploidy induction, the role of the cytoskeleton still remains largely unknown. Through immunodetection of alpha-tubulin, different concentrations (0.5 or 5 mM) of colchicine were found to produce opposite effects in the organization of the cytoskeleton in rye (Secale cereale L.). A low concentration (0.5 mM) induced depolymerization of the microtubular cytoskeleton in all phases of the cell cycle. In contrast, a high concentration (5 mM) was found to induce the polymerization of new tubulin-containing structures in c-metaphase cells. Furthermore, both treatments also showed contrasting effects in the induction of polyploid cells. Flow cytometric analysis and quantitative assessments of nucleolus-organizing regions revealed that only the high-concentration colchicine treatment was effective in the formation of polyploid cells. Our studies indicate that spindle disruption alone is insufficient for the induction of polyploid cells. The absence of any tubulin structures in plants treated with colchicine at the low concentration induced cell anomalies, such as the occurrence of nuclei with irregular shape and/or (additional) micronuclei, 12 h after recovery, pointing to a direct effect on cell viability. In contrast, the almost insignificant level of cell anomalies in the high-concentration treatment suggests that the presence of new tubulin-containing structures allows the reconstitution of 4C nuclei and their progression into the cell cycle.

Keywords: Induced polyploidy; Colchicine; Tubulin array; Secale cereale


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apostolakos, P, Galatis, B, Gatsaros, C, Schnepf, E 1990Tubulin conformation in microtubule-free cells of Vigna sinensis: an immunofluorescent and electron microscopy studyProtoplasma154132143CrossRefGoogle Scholar
  2. Barow, M, Meister, A 2002Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye bindingCytometry4717CrossRefPubMedGoogle Scholar
  3. Breitling, F, Little, M 1986Carboxy-terminal regions on the surface of tubulin and microtubules. Epitope locations of YOL1/34, DM1A and DM1BJ Mol Biol189367370CrossRefPubMedGoogle Scholar
  4. Caperta, AD, Neves, N, Morais-Cecílio, L, Malho, R, Viegas, W 2002Genome restructuring in rye affects the expression, organization and disposition of homologous rDNA lociJ Cell Sci11528392846PubMedGoogle Scholar
  5. Chaudhuri, SK, Ghosh, S 1997Monoclonal antibody raised against human mitotic cyclin B1, identifies cyclin B-like mitotic proteins in synchronized onion (Allium cepa) root meristemCell Biol Int21159166CrossRefPubMedGoogle Scholar
  6. Darlington, CD, LaCour, LF 1963The handling of chromosomesGeorge Allen & UnwinLondonGoogle Scholar
  7. Delgado, M, Morais-Cecílio, L, Neves, N, Jones, RN, Viegas, W 1995The influence of B chromosomes on rDNA organization in rye interphase nucleiChromosome Res3487491CrossRefPubMedGoogle Scholar
  8. Dewitte, W, Murray, JA 2003The plant cell cycleAnnu Rev Plant Biol54235264CrossRefPubMedGoogle Scholar
  9. Duckett, CM, Lloyd, CW 1994Giberellic acid-induced microtubule reorientation in dwarf pea is accompanied by rapid modification of an α-tubulin isotypePlant J5363372CrossRefGoogle Scholar
  10. Eigsti, OJ, Dustin, P 1955Colchicine in agriculture, medicine, biology and chemistryThe Iowa State College PressAmes, IowaGoogle Scholar
  11. Galbraith, DW, Harkins, KR, Maddox, JM, Ayres, NM, Sharma, DP, Firoozabady, E 1983Rapid flow cytometric analysis of the cell cycle in intact plant tissuesScience22010491051Google Scholar
  12. Gerlach, WL, Bedbrook, JR 1979Cloning and characterization of ribosomal RNA genes from wheat and barleyNucleic Acids Res818691885Google Scholar
  13. Ghosh, S, Paweletz, N 1984Synchronous DNA synthesis and mitosis in multinucleate cells with one chromosome in each nucleusChromosoma (Berl)89197200CrossRefGoogle Scholar
  14. Gilmer, S, Clay, P, Macrae, TH, Fowke, LC 1999Tyrosinated, but not detyrosinated, α-tubulin is present in root tip cellsProtoplasma2109298CrossRefGoogle Scholar
  15. Givan, AL 2001Principles of flow cytometry: an overviewDarzynkiewicz, ZRobinson, JPCrissman, H eds. Cytometry, part AAcademic PressLondon1950Google Scholar
  16. Hague, LM, Jones, RN 1987Cytogenetics of Lolium perenne Part 4. Colchicine-induced variation in diploidsTheor Appl Genet74233241CrossRefGoogle Scholar
  17. Karagiannidou, T, Eleftheriou, EP, Tsekos, I, Galatis, B, Apostolakos, P 1995Colchicine-induced paracrystals in root cells of wheat (Triticum aestivum L.)Ann Bot762330CrossRefGoogle Scholar
  18. Kilmartin, JV, Wright, B, Milstein, C 1982Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell lineJ Cell Biol93576582CrossRefPubMedGoogle Scholar
  19. Labidi, B, Frackowiak, S, Hernandez-Verdun, D 1987Identification and sorting of micronuclei containing individual chromosomesExp Cell Res173617627CrossRefPubMedGoogle Scholar
  20. Lazareva, EM, Polyakov, VY, Chentsov, YS, Smirnova, EA 2003Time and cell cycle dependent formation of heterogeneous tubulin arrays induced by colchicine in Triticum aestivum root meristemCell Biol Int27633646CrossRefPubMedGoogle Scholar
  21. Morais-Cecílio, L, Queiroz, A, Viegas, W 1991Differential effects of colchicine in genotypes with one or more haploid setsCytologia56157164Google Scholar
  22. Morejohn, LC, Fosket, DE 1991The biochemistry of compounds with anti-microtubule activity in plant cellsPharmacol Ther51217230CrossRefPubMedGoogle Scholar
  23. Panda, D, Goode, BL, Feinstein, SC, Wilson, L 1995Kinetic stabilization of microtubule dynamics at steady state by tau and microtubule-binding domains of tauBiochemistry (Washington)341111711127Google Scholar
  24. Planchais, S, Glab, N, Inze, D, Bergounioux, C 2000Chemical inhibitors: a tool for plant cell cycle studiesFEBS Lett4767883CrossRefPubMedGoogle Scholar
  25. Rieder, CL, Palazzo, RE 1992Colcemid and the mitotic cycleJ Cell Sci102387392PubMedGoogle Scholar
  26. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. Bios, OxfordGoogle Scholar
  27. Utrilla, L, Sans, J, de la Torre, C 1989Colchicine-resistant assembly of tubulin in plant mitosisProtoplasma152101108CrossRefGoogle Scholar
  28. Weingartner, M, Criqui, M-C, Mészáros, T, Binarova, P, Schmit, A-C, Helfer, A, Derevier, A, Erhardt, M, Bögre, L, Genschik, P 2004Expression of nondegradable cyclin B1 affects plant development and leads to endomitosis by inhibiting the formation of a phragmoplastPlant Cell16643657CrossRefPubMedGoogle Scholar
  29. Welnhofer, EA, Travis, JL 1998Evidence for a direct conversion between two tubulin polymers – microtubules and helical filaments – in the foraminiferan, Allogromia laticollaris Cell Motil Cytoskeleton41107116CrossRefPubMedGoogle Scholar
  30. Wick, SM, Duniec, J 1983Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulinJ Cell Biol97235243CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • A. D. Caperta
    • 1
    • 2
    Email author
  • M. Delgado
    • 1
    • 2
  • F. Ressurreição
    • 1
  • A. Meister
    • 3
  • R. N. Jones
    • 4
  • W. Viegas
    • 1
  • A. Houben
    • 5
  1. 1.Secção de Genética, Centro de Botânica Aplicada à Agricultura, Instituto Superior de Agronomia, Universidade Técnica de LisboaLisbon
  2. 2.Departamento de Ciências NaturaisAmbientais e Biotecnológicas, Universidade Lusófona de Humanidades e TecnologiasLisbon
  3. 3.Karyotype Evolution GroupInstitut für Pflanzengenetik und KulturpflanzenforschungGatersleben
  4. 4.Institute of Biological Sciences, University of WalesAberystwyth
  5. 5.Chromosome Structure and Function GroupInstitut für Pflanzengenetik und KulturpflanzenforschungGatersleben

Personalised recommendations