Skip to main content
Log in

Ultrafast domain wall motion in hexagonal magnetostrictive materials: role of inertial damping, magnetostriction, and dry-friction dissipation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article investigates the dynamic features of domain walls in a bilayer piezoelectric-magnetostrictive heterostructure under the influence of piezo-induced strains, inertial damping, and dry friction dissipation. We assume that the magnetostrictive material belongs to the transversely isotropic hexagonal crystal. The analysis is carried out within the framework of the inertial Landau-Lifshitz-Gilbert equation, which describes the ultrafast evolution of magnetization inside the magnetostrictive materials. By employing the classical traveling wave ansatz, the study explores how various factors such as magnetoelasticity, dry friction, inertial damping, crystal symmetry, and a tunable external magnetic field characterize the motion of the magnetic domain walls in both steady-state and precessional dynamic regimes. The results present valuable insights into how these key parameters can effectively modulate dynamic features such as domain wall width, threshold, Walker breakdown, and domain wall velocity. The obtained analytical results are further numerically illustrated, and a qualitative comparison with recent observations is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DW:

Domain wall

PES:

Piezoelectric strip

FMS:

Ferromagnetic strip

WB:

Walker breakdown

MS:

Magnetostrictive

iLLG:

inertial Landau-Lifshitz-Gilbert

References

  1. Shepley, P.M., Rushforth, A.W., Wang, M., Burnell, G., Moore, T.A.: Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain. Sci. Rep. 5(1), 7921 (2015)

    Article  Google Scholar 

  2. Miron, I.M., Moore, T., Szambolics, H., Buda-Prejbeanu, L.D., Auffret, S., Rodmacq, B., ... Gaudin, G.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011)

  3. Wang, K.L., Alzate, J.G., Amiri, P.K.: Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 074003 (2013)

    Article  Google Scholar 

  4. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  Google Scholar 

  5. Ryu, K.S., Thomas, L., Yang, S.H., Parkin, S.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013)

    Article  Google Scholar 

  6. Emori, S., Bauer, U., Ahn, S.M., Martinez, E., Beach, G.S.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013)

    Article  Google Scholar 

  7. Consolo, G., Federico, S., Valenti, G.: Magnetostriction in transversely isotropic hexagonal crystals. Phys. Rev. B 101(1), 014405 (2020)

    Article  Google Scholar 

  8. Boona, S.R., Watzman, S.J., Heremans, J.P.: Research Update: utilizing magnetization dynamics in solid-state thermal energy conversion. APL Mater. 4(10), 360 (2016)

    Article  Google Scholar 

  9. Vaz, C.A., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22(26–27), 2900–2918 (2010)

    Article  Google Scholar 

  10. Dwivedi, S., Dubey, S.: On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field. Int. J. Appl. Comput. Math. 3, 27–42 (2017)

    Article  MathSciNet  Google Scholar 

  11. Schryer, N.L., Walker, L.R.: The motion of 180 domain walls in uniform dc magnetic fields. J. Appl. Phys. 45(12), 5406–5421 (1974)

    Article  Google Scholar 

  12. Maity, S., Dolui, S., Dwivedi, S.: Strain-induced fast domain wall motion in hybrid piezoelectric-magnetostrictive structures with Rashba and nonlinear dissipative effects. Acta. Mech. Sin. 40(9), 423613 (2024)

    Article  MathSciNet  Google Scholar 

  13. Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2008)

    Google Scholar 

  14. Consolo, G., Federico, S., Valenti, G.: Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. Ricerche Mat. 70(1), 81–97 (2021)

    Article  MathSciNet  Google Scholar 

  15. Chikazumi, S., Graham, C.D.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)

    Book  Google Scholar 

  16. Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, New York (2011)

    Google Scholar 

  17. Clark, A.E., Hathaway, K.B., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Keppens, V.M., ... Taylor, R.A.: Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. J. Appl. Phys. 93(10), 8621–8623 (2003)

  18. Wuttig, M., Dai, L., Cullen, J.: Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl. Phys. Lett. 80(7), 1135–1137 (2002)

    Article  Google Scholar 

  19. Rafique, S., Cullen, J.R., Wuttig, M., Cui, J.: Magnetic anisotropy of FeGa alloys. J. Appl. Phys. 95(11), 6939–6941 (2004)

    Article  Google Scholar 

  20. Gopman, D.B., Sampath, V., Ahmad, H., Bandyopadhyay, S., Atulasimha, J.: Static and dynamic magnetic properties of sputtered Fe-Ga thin films. IEEE Trans. Magn. 53(11), 1–4 (2017)

    Article  Google Scholar 

  21. Consolo, G., Valenti, G.: Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures. J. Appl. Phys. 121(4), 536 (2017)

    Article  Google Scholar 

  22. De Ranieri, E., Roy, P.E., Fang, D., Vehsthedt, E.K., Irvine, A.C., Heiss, D., ... Wunderlich, J.: Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat. Mater. 12(9), 808–814 (2013)

  23. Consolo, G., Curro, C., Martinez, E., Valenti, G.: Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl. Math. Model. 36(10), 4876–4886 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mougin, A., Cormier, M., Adam, J.P., Metaxas, P.J., Ferré, J.: Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78(5), 57007 (2007)

    Article  Google Scholar 

  25. Dwivedi, S., Dubey, S.: Field-driven magnetization reversal in a three-dimensional network of ferromagnetic ellipsoidal samples. Rendiconti del Circolo Matematico di Palermo Series 2, 69(2), 497–519 (2020)

  26. Landau, L. A. L. E., & Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In: Perspectives in Theoretical Physics, pp. 51-65. Pergamon (1992)

  27. Visintin, A.: Modified Landau-Lifshitz equation for ferromagnetism. Physica B 233(4), 365–369 (1997)

    Article  Google Scholar 

  28. Shahu, C.K., Dwivedi, S., Dubey, S.: Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects. Appl. Math. Comput. 420, 126894 (2022)

    MathSciNet  Google Scholar 

  29. Maity, S., Dolui, S., Dwivedi, S., Consolo, G.: Domain wall dynamics in cubic magnetostrictive materials subject to Rashba effect and nonlinear dissipation. Z. Angew. Math. Phys. 74(1), 23 (2023)

    Article  MathSciNet  Google Scholar 

  30. Consolo, G., Valenti, G.: Traveling wave solutions of the one-dimensional extended Landau-Lifshitz-Gilbert equation with nonlinear dry and viscous dissipations. Acta Appl. Math. 122, 141–152 (2012)

    MathSciNet  Google Scholar 

  31. Shahu, C.K., Dwivedi, S., Dubey, S.: Dynamics of curved domain walls in hard ferromagnets with nonlinear dissipative and inertial effects. Physica D 448, 133737 (2023)

    Article  MathSciNet  Google Scholar 

  32. Ciornei, M.C., Rubí, J.M., Wegrowe, J.E.: Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys. Rev. B 83(2), 020410 (2011)

    Article  Google Scholar 

  33. Wegrowe, J.E., Ciornei, M.C.: Magnetization dynamics, gyromagnetic relation, and inertial effects. Am. J. Phys. 80(7), 607–611 (2012)

    Article  Google Scholar 

  34. Olive, E., Lansac, Y., Wegrowe, J.E.: Beyond ferromagnetic resonance: the inertial regime of the magnetization. Appl. Phys. Lett. 100(19), 63 (2012)

    Article  Google Scholar 

  35. Fähnle, M., Steiauf, D., Illg, C.: Generalized Gilbert equation including inertial damping: derivation from an extended breathing Fermi surface model. Phys. Rev. B 84(17), 172403 (2011)

    Article  Google Scholar 

  36. Neeraj, K., Pancaldi, M., Scalera, V., Perna, S., d’Aquino, M., Serpico, C., Bonetti, S.: Magnetization switching in the inertial regime. Phys. Rev. B 105(5), 054415 (2022)

    Article  Google Scholar 

  37. Neeraj, K., Awari, N., Kovalev, S., Polley, D., Zhou Hagström, N., Arekapudi, S.S.P.K., ... Bonetti, S.: Inertial spin dynamics in ferromagnets. Nat. Phys. 17(2), 245–250 (2021)

  38. Dwivedi, S., Dubey, S.: Field-driven motion of ferrofluids in ferromagnetic nanowire under the influence of inertial effects. Proc. Eng. 127, 3–9 (2015)

    Article  Google Scholar 

  39. Kimel, A.V., Ivanov, B.A., Pisarev, R.V., Usachev, P.A., Kirilyuk, A., Rasing, T.: Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5(10), 727–731 (2009)

    Article  Google Scholar 

  40. Giordano, S., Déjardin, P.M.: Derivation of magnetic inertial effects from the classical mechanics of a circular current loop. Phys. Rev. B 102(21), 214406 (2020)

    Article  Google Scholar 

  41. Dwivedi, S., Singh, Y.P., Consolo, G.: On the statics and dynamics of transverse domain walls in bilayer piezoelectric-magnetostrictive nanostructures. Appl. Math. Model. 83, 13–29 (2020)

    Article  MathSciNet  Google Scholar 

  42. Shahu, C.K., Dubey, S., Dwivedi, S.: Domain wall motion in multiferroic nanostructures under the influence of spin-orbit torque and nonlinear dissipative effect. Mech. Adv. Mater. Struct. 5, 1–11 (2022)

    Google Scholar 

  43. Consolo, G.: Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry. Ricerche Mat. 67, 1001–1015 (2018)

    Article  MathSciNet  Google Scholar 

  44. Moon, K.W., Kim, D.H., Kim, C., Kim, D.Y., Choe, S.B., Hwang, C.: Domain wall motion driven by an oscillating magnetic field. J. Phys. D Appl. Phys. 50(12), 125003 (2017)

    Article  Google Scholar 

  45. Olive, E., Lansac, Y., Meyer, M., Hayoun, M., Wegrowe, J.E.: Deviation from the Landau-Lifshitz-Gilbert equation in the inertial regime of the magnetization. J. Appl. Phys. 117(21), 523 (2015)

    Article  Google Scholar 

  46. Dubey, S., Dwivedi, S.: On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples. Diff. Equ. Dynam. Syst. 27, 277–297 (2019)

    Article  MathSciNet  Google Scholar 

  47. Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures. Appl. Phys. Lett. 108(8), 52 (2016)

    Article  Google Scholar 

  48. Dwivedi, S., Dubey, S.: On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires. J. Appl. Anal. 23(2), 89–100 (2017)

    Article  MathSciNet  Google Scholar 

  49. Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Domain-wall dynamics in magnetoelastic nanostripes. Phys. Rev. B 95(14), 140405 (2017)

    Article  Google Scholar 

  50. Ravaud, R., Lemarquand, G.: Magnetic field produced by a parallelepipedic magnet of various and uniform polarization. Prog. Electromag. Res. 98, 207 (2009)

    Article  Google Scholar 

  51. Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Mechanically driven domain wall movement in magnetoelastic nanomagnets. Eur. Phys. J. B 89(7), 169 (2016)

    Article  MathSciNet  Google Scholar 

  52. Sharipov, M.Z., Hayitov, D.E., Raupova, I.B., Sadikova, M.I.: Influence of hexagonal symmetry stresses on domain structure and magnetization process of FeBO3 single crystal. Eurasian Phys. Technol. J. 17(33), 65–72 (2020)

    Article  Google Scholar 

  53. Federico, S., Consolo, G., Valenti, G.: Tensor representation of magnetostriction for all crystal classes. Math. Mech. Solids 24(9), 2814–2843 (2019)

    Article  MathSciNet  Google Scholar 

  54. Bozorth, R.M.: Magnetostriction and crystal anisotropy of single crystals of hexagonal cobalt. Phys. Rev. 96(2), 311 (1954)

    Article  Google Scholar 

  55. Mason, W.P.: Derivation of magnetostriction and anisotropic energies for hexagonal, tetragonal, and orthorhombic crystals. Phys. Rev. 96(2), 302 (1954)

    Article  Google Scholar 

  56. Hubert, A., Unger, W., Kranz, J.: Measurement of the magnetostriction constants of cobalt as a function of temperature. Z. Phys. 224, 148–155 (1969)

    Article  Google Scholar 

  57. Podio-Guidugli, P., Tomassetti, G.: On the steady motions of a flat domain wall in a ferromagnet. Eur. Phys. J. B-Conden. Matter Comp. Syst. 26, 191–198 (2002)

    Article  Google Scholar 

  58. Puliafito, V., Consolo, G.: On the travelling wave solution for the current-driven steady domain wall motion in magnetic nanostrips under the influence of Rashba field. Adv. Conden. Matter Phys. 5, 63 (2012)

    Google Scholar 

  59. Bruno, P.: Magnetic surface anisotropy of cobalt and surface roughness effects within Neel’s model. J. Phys. F Met. Phys. 18(6), 1291 (1988)

    Article  Google Scholar 

  60. Paes, V.Z.C., Mosca, D.H.: Field-induced lattice deformation contribution to the magnetic anisotropy. J. Appl. Phys. 112(10), 536 (2012)

    Article  Google Scholar 

  61. Eyrich, C., Huttema, W., Arora, M., Montoya, E., Rashidi, F., Burrowes, C., Kardasz, B., Girt, E., Heinrich, B., Mryasov, O.N., From, M., Karis, O.: Exchange stiffness in thin film Co alloys. J. Appl. Phys. 111(7), 07C919 (2012)

    Article  Google Scholar 

  62. Oogane, M., Wakitani, T., Yakata, S., Yilgin, R., Ando, Y., Sakuma, A., Miyazaki, T.: Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45(5R), 3889 (2006)

    Article  Google Scholar 

  63. Nakamura, N., Ogi, H., Hirao, M., Ono, T.: Elastic constants and magnetic anisotropy of Co/Pt superlattice thin films. Appl. Phys. Lett. 86(11), 563 (2005)

    Article  Google Scholar 

  64. Consolo, G., & Valenti, G.: Optimized voltage-induced control of magnetic domain-wall propagation in hybrid piezoelectric/magnetostrictive devices. In: Actuators, Vol. 10, No. 6, p. 134. MDPI (2021)

  65. Tang, E., Wang, Y., Wang, R., Han, Y., Chang, M., Chen, C., ... He, L.: Electrical output performance of PZT-5H under the superposition of temperature, temperature change rate and pulse stress. Mater. Chem. Phys. 307, 128109 (2023)

  66. Dean, J., Bryan, M.T., Schrefl, T., Allwood, D.A.: Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems. J. Appl. Phys. 109(2), 63 (2011)

    Article  Google Scholar 

  67. Metaxas, P.J., Sampaio, J., Chanthbouala, A., Matsumoto, R., Anane, A., Fert, A., ... Grollier, J.: High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3(1), 1829 (2013)

  68. Hu, J.M., Yang, T., Momeni, K., Cheng, X., Chen, L., Lei, S., ... Chen, L.Q.: Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 16(4), 2341–2348 (2016)

  69. Franken, J.H., Yin, Y., Schellekens, A.J., van den Brink, A., Swagten, H.J.M., Koopmans, B.: Voltage-gated pinning in a magnetic domain-wall conduit. Appl. Phys. Lett. 103(10), 210 (2013)

    Article  Google Scholar 

Download references

Funding

Sharad Dwivedi would like to thank the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, and the National Institute of Technology Andhra Pradesh for the financial support through Projects CRG/2019/003101 and NITAP/SDG/15/2020, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Dwivedi.

Ethics declarations

Conflict of Interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolui, S., Halder, A. & Dwivedi, S. Ultrafast domain wall motion in hexagonal magnetostrictive materials: role of inertial damping, magnetostriction, and dry-friction dissipation. Acta Mech (2024). https://doi.org/10.1007/s00707-024-04069-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-04069-9

Mathematics Subject Classification

Navigation