Abstract
This article investigates the dynamic features of domain walls in a bilayer piezoelectric-magnetostrictive heterostructure under the influence of piezo-induced strains, inertial damping, and dry friction dissipation. We assume that the magnetostrictive material belongs to the transversely isotropic hexagonal crystal. The analysis is carried out within the framework of the inertial Landau-Lifshitz-Gilbert equation, which describes the ultrafast evolution of magnetization inside the magnetostrictive materials. By employing the classical traveling wave ansatz, the study explores how various factors such as magnetoelasticity, dry friction, inertial damping, crystal symmetry, and a tunable external magnetic field characterize the motion of the magnetic domain walls in both steady-state and precessional dynamic regimes. The results present valuable insights into how these key parameters can effectively modulate dynamic features such as domain wall width, threshold, Walker breakdown, and domain wall velocity. The obtained analytical results are further numerically illustrated, and a qualitative comparison with recent observations is also presented.
Similar content being viewed by others
Abbreviations
- DW:
-
Domain wall
- PES:
-
Piezoelectric strip
- FMS:
-
Ferromagnetic strip
- WB:
-
Walker breakdown
- MS:
-
Magnetostrictive
- iLLG:
-
inertial Landau-Lifshitz-Gilbert
References
Shepley, P.M., Rushforth, A.W., Wang, M., Burnell, G., Moore, T.A.: Modification of perpendicular magnetic anisotropy and domain wall velocity in Pt/Co/Pt by voltage-induced strain. Sci. Rep. 5(1), 7921 (2015)
Miron, I.M., Moore, T., Szambolics, H., Buda-Prejbeanu, L.D., Auffret, S., Rodmacq, B., ... Gaudin, G.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10(6), 419–423 (2011)
Wang, K.L., Alzate, J.G., Amiri, P.K.: Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 074003 (2013)
Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)
Ryu, K.S., Thomas, L., Yang, S.H., Parkin, S.: Chiral spin torque at magnetic domain walls. Nat. Nanotechnol. 8(7), 527–533 (2013)
Emori, S., Bauer, U., Ahn, S.M., Martinez, E., Beach, G.S.: Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12(7), 611–616 (2013)
Consolo, G., Federico, S., Valenti, G.: Magnetostriction in transversely isotropic hexagonal crystals. Phys. Rev. B 101(1), 014405 (2020)
Boona, S.R., Watzman, S.J., Heremans, J.P.: Research Update: utilizing magnetization dynamics in solid-state thermal energy conversion. APL Mater. 4(10), 360 (2016)
Vaz, C.A., Hoffman, J., Ahn, C.H., Ramesh, R.: Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22(26–27), 2900–2918 (2010)
Dwivedi, S., Dubey, S.: On dynamics of current-induced static wall profiles in ferromagnetic nanowires governed by the Rashba field. Int. J. Appl. Comput. Math. 3, 27–42 (2017)
Schryer, N.L., Walker, L.R.: The motion of 180 domain walls in uniform dc magnetic fields. J. Appl. Phys. 45(12), 5406–5421 (1974)
Maity, S., Dolui, S., Dwivedi, S.: Strain-induced fast domain wall motion in hybrid piezoelectric-magnetostrictive structures with Rashba and nonlinear dissipative effects. Acta. Mech. Sin. 40(9), 423613 (2024)
Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2008)
Consolo, G., Federico, S., Valenti, G.: Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. Ricerche Mat. 70(1), 81–97 (2021)
Chikazumi, S., Graham, C.D.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)
Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials. Wiley, New York (2011)
Clark, A.E., Hathaway, K.B., Wun-Fogle, M., Restorff, J.B., Lograsso, T.A., Keppens, V.M., ... Taylor, R.A.: Extraordinary magnetoelasticity and lattice softening in bcc Fe-Ga alloys. J. Appl. Phys. 93(10), 8621–8623 (2003)
Wuttig, M., Dai, L., Cullen, J.: Elasticity and magnetoelasticity of Fe-Ga solid solutions. Appl. Phys. Lett. 80(7), 1135–1137 (2002)
Rafique, S., Cullen, J.R., Wuttig, M., Cui, J.: Magnetic anisotropy of FeGa alloys. J. Appl. Phys. 95(11), 6939–6941 (2004)
Gopman, D.B., Sampath, V., Ahmad, H., Bandyopadhyay, S., Atulasimha, J.: Static and dynamic magnetic properties of sputtered Fe-Ga thin films. IEEE Trans. Magn. 53(11), 1–4 (2017)
Consolo, G., Valenti, G.: Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures. J. Appl. Phys. 121(4), 536 (2017)
De Ranieri, E., Roy, P.E., Fang, D., Vehsthedt, E.K., Irvine, A.C., Heiss, D., ... Wunderlich, J.: Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nat. Mater. 12(9), 808–814 (2013)
Consolo, G., Curro, C., Martinez, E., Valenti, G.: Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl. Math. Model. 36(10), 4876–4886 (2012)
Mougin, A., Cormier, M., Adam, J.P., Metaxas, P.J., Ferré, J.: Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78(5), 57007 (2007)
Dwivedi, S., Dubey, S.: Field-driven magnetization reversal in a three-dimensional network of ferromagnetic ellipsoidal samples. Rendiconti del Circolo Matematico di Palermo Series 2, 69(2), 497–519 (2020)
Landau, L. A. L. E., & Lifshitz, E.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. In: Perspectives in Theoretical Physics, pp. 51-65. Pergamon (1992)
Visintin, A.: Modified Landau-Lifshitz equation for ferromagnetism. Physica B 233(4), 365–369 (1997)
Shahu, C.K., Dwivedi, S., Dubey, S.: Curved domain walls in the ferromagnetic nanostructures with Rashba and nonlinear dissipative effects. Appl. Math. Comput. 420, 126894 (2022)
Maity, S., Dolui, S., Dwivedi, S., Consolo, G.: Domain wall dynamics in cubic magnetostrictive materials subject to Rashba effect and nonlinear dissipation. Z. Angew. Math. Phys. 74(1), 23 (2023)
Consolo, G., Valenti, G.: Traveling wave solutions of the one-dimensional extended Landau-Lifshitz-Gilbert equation with nonlinear dry and viscous dissipations. Acta Appl. Math. 122, 141–152 (2012)
Shahu, C.K., Dwivedi, S., Dubey, S.: Dynamics of curved domain walls in hard ferromagnets with nonlinear dissipative and inertial effects. Physica D 448, 133737 (2023)
Ciornei, M.C., Rubí, J.M., Wegrowe, J.E.: Magnetization dynamics in the inertial regime: nutation predicted at short time scales. Phys. Rev. B 83(2), 020410 (2011)
Wegrowe, J.E., Ciornei, M.C.: Magnetization dynamics, gyromagnetic relation, and inertial effects. Am. J. Phys. 80(7), 607–611 (2012)
Olive, E., Lansac, Y., Wegrowe, J.E.: Beyond ferromagnetic resonance: the inertial regime of the magnetization. Appl. Phys. Lett. 100(19), 63 (2012)
Fähnle, M., Steiauf, D., Illg, C.: Generalized Gilbert equation including inertial damping: derivation from an extended breathing Fermi surface model. Phys. Rev. B 84(17), 172403 (2011)
Neeraj, K., Pancaldi, M., Scalera, V., Perna, S., d’Aquino, M., Serpico, C., Bonetti, S.: Magnetization switching in the inertial regime. Phys. Rev. B 105(5), 054415 (2022)
Neeraj, K., Awari, N., Kovalev, S., Polley, D., Zhou Hagström, N., Arekapudi, S.S.P.K., ... Bonetti, S.: Inertial spin dynamics in ferromagnets. Nat. Phys. 17(2), 245–250 (2021)
Dwivedi, S., Dubey, S.: Field-driven motion of ferrofluids in ferromagnetic nanowire under the influence of inertial effects. Proc. Eng. 127, 3–9 (2015)
Kimel, A.V., Ivanov, B.A., Pisarev, R.V., Usachev, P.A., Kirilyuk, A., Rasing, T.: Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5(10), 727–731 (2009)
Giordano, S., Déjardin, P.M.: Derivation of magnetic inertial effects from the classical mechanics of a circular current loop. Phys. Rev. B 102(21), 214406 (2020)
Dwivedi, S., Singh, Y.P., Consolo, G.: On the statics and dynamics of transverse domain walls in bilayer piezoelectric-magnetostrictive nanostructures. Appl. Math. Model. 83, 13–29 (2020)
Shahu, C.K., Dubey, S., Dwivedi, S.: Domain wall motion in multiferroic nanostructures under the influence of spin-orbit torque and nonlinear dissipative effect. Mech. Adv. Mater. Struct. 5, 1–11 (2022)
Consolo, G.: Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry. Ricerche Mat. 67, 1001–1015 (2018)
Moon, K.W., Kim, D.H., Kim, C., Kim, D.Y., Choe, S.B., Hwang, C.: Domain wall motion driven by an oscillating magnetic field. J. Phys. D Appl. Phys. 50(12), 125003 (2017)
Olive, E., Lansac, Y., Meyer, M., Hayoun, M., Wegrowe, J.E.: Deviation from the Landau-Lifshitz-Gilbert equation in the inertial regime of the magnetization. J. Appl. Phys. 117(21), 523 (2015)
Dubey, S., Dwivedi, S.: On controllability of a two-dimensional network of ferromagnetic ellipsoidal samples. Diff. Equ. Dynam. Syst. 27, 277–297 (2019)
Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Stress-mediated magnetoelectric control of ferromagnetic domain wall position in multiferroic heterostructures. Appl. Phys. Lett. 108(8), 52 (2016)
Dwivedi, S., Dubey, S.: On the stability of steady-states of a two-dimensional system of ferromagnetic nanowires. J. Appl. Anal. 23(2), 89–100 (2017)
Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Domain-wall dynamics in magnetoelastic nanostripes. Phys. Rev. B 95(14), 140405 (2017)
Ravaud, R., Lemarquand, G.: Magnetic field produced by a parallelepipedic magnet of various and uniform polarization. Prog. Electromag. Res. 98, 207 (2009)
Mathurin, T., Giordano, S., Dusch, Y., Tiercelin, N., Pernod, P., Preobrazhensky, V.: Mechanically driven domain wall movement in magnetoelastic nanomagnets. Eur. Phys. J. B 89(7), 169 (2016)
Sharipov, M.Z., Hayitov, D.E., Raupova, I.B., Sadikova, M.I.: Influence of hexagonal symmetry stresses on domain structure and magnetization process of FeBO3 single crystal. Eurasian Phys. Technol. J. 17(33), 65–72 (2020)
Federico, S., Consolo, G., Valenti, G.: Tensor representation of magnetostriction for all crystal classes. Math. Mech. Solids 24(9), 2814–2843 (2019)
Bozorth, R.M.: Magnetostriction and crystal anisotropy of single crystals of hexagonal cobalt. Phys. Rev. 96(2), 311 (1954)
Mason, W.P.: Derivation of magnetostriction and anisotropic energies for hexagonal, tetragonal, and orthorhombic crystals. Phys. Rev. 96(2), 302 (1954)
Hubert, A., Unger, W., Kranz, J.: Measurement of the magnetostriction constants of cobalt as a function of temperature. Z. Phys. 224, 148–155 (1969)
Podio-Guidugli, P., Tomassetti, G.: On the steady motions of a flat domain wall in a ferromagnet. Eur. Phys. J. B-Conden. Matter Comp. Syst. 26, 191–198 (2002)
Puliafito, V., Consolo, G.: On the travelling wave solution for the current-driven steady domain wall motion in magnetic nanostrips under the influence of Rashba field. Adv. Conden. Matter Phys. 5, 63 (2012)
Bruno, P.: Magnetic surface anisotropy of cobalt and surface roughness effects within Neel’s model. J. Phys. F Met. Phys. 18(6), 1291 (1988)
Paes, V.Z.C., Mosca, D.H.: Field-induced lattice deformation contribution to the magnetic anisotropy. J. Appl. Phys. 112(10), 536 (2012)
Eyrich, C., Huttema, W., Arora, M., Montoya, E., Rashidi, F., Burrowes, C., Kardasz, B., Girt, E., Heinrich, B., Mryasov, O.N., From, M., Karis, O.: Exchange stiffness in thin film Co alloys. J. Appl. Phys. 111(7), 07C919 (2012)
Oogane, M., Wakitani, T., Yakata, S., Yilgin, R., Ando, Y., Sakuma, A., Miyazaki, T.: Magnetic damping in ferromagnetic thin films. Jpn. J. Appl. Phys. 45(5R), 3889 (2006)
Nakamura, N., Ogi, H., Hirao, M., Ono, T.: Elastic constants and magnetic anisotropy of Co/Pt superlattice thin films. Appl. Phys. Lett. 86(11), 563 (2005)
Consolo, G., & Valenti, G.: Optimized voltage-induced control of magnetic domain-wall propagation in hybrid piezoelectric/magnetostrictive devices. In: Actuators, Vol. 10, No. 6, p. 134. MDPI (2021)
Tang, E., Wang, Y., Wang, R., Han, Y., Chang, M., Chen, C., ... He, L.: Electrical output performance of PZT-5H under the superposition of temperature, temperature change rate and pulse stress. Mater. Chem. Phys. 307, 128109 (2023)
Dean, J., Bryan, M.T., Schrefl, T., Allwood, D.A.: Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems. J. Appl. Phys. 109(2), 63 (2011)
Metaxas, P.J., Sampaio, J., Chanthbouala, A., Matsumoto, R., Anane, A., Fert, A., ... Grollier, J.: High domain wall velocities via spin transfer torque using vertical current injection. Sci. Rep. 3(1), 1829 (2013)
Hu, J.M., Yang, T., Momeni, K., Cheng, X., Chen, L., Lei, S., ... Chen, L.Q.: Fast magnetic domain-wall motion in a ring-shaped nanowire driven by a voltage. Nano Lett. 16(4), 2341–2348 (2016)
Franken, J.H., Yin, Y., Schellekens, A.J., van den Brink, A., Swagten, H.J.M., Koopmans, B.: Voltage-gated pinning in a magnetic domain-wall conduit. Appl. Phys. Lett. 103(10), 210 (2013)
Funding
Sharad Dwivedi would like to thank the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, and the National Institute of Technology Andhra Pradesh for the financial support through Projects CRG/2019/003101 and NITAP/SDG/15/2020, respectively.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors have no conflicts to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Dolui, S., Halder, A. & Dwivedi, S. Ultrafast domain wall motion in hexagonal magnetostrictive materials: role of inertial damping, magnetostriction, and dry-friction dissipation. Acta Mech (2024). https://doi.org/10.1007/s00707-024-04069-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00707-024-04069-9