Skip to main content
Log in

Study on thermal elastic damping of micro-scale semiconductor beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Thermoelastic damping (TED) is a fundamental dissipation mechanism that inevitably exists in high-performance micro/nano-electro-mechanical systems. In this paper, the damping characteristics in semiconductor microbeam are studied under coupled carrier-thermo-elastic theory. Using conventional LR model and considering the effect of carrier, the governing equations for TED in semiconductor beam were obtained and the analytical solution for temperature and carrier density was obtained using complex frequency method. The expression for inverse quality factor was given by solving the vibration equation. The effects of cantilever beam size, material parameters, temperature, and doping concentration on TED were studied, and the results showed that the carrier has significant influence on the dissipation performance of semiconductor microstructures. The study also indicated that when carrier characteristics are ignored, this conclusion can degenerate into classical TED results under LR model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zener, C.: Internal friction in solids I. Theor. Intern. Frict. Reeds Phys. Rev. 52, 0230–0235 (1937)

    Google Scholar 

  2. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  3. Deresiewicz, H.: Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 29, 204–209 (1957)

    Article  MathSciNet  Google Scholar 

  4. Chadwick, P., Sneddon, I.N.: Plane waves in an elastic solid conducting heat. J. Mech. Phys. Solids 6, 223–230 (1958)

    Article  MathSciNet  Google Scholar 

  5. Lockett, F.J.: Effect of thermal properties of a solid on the velocity of rayleigh Waves. J. Mech. Phys. Solids 7, 71–75 (1958)

    Article  MathSciNet  Google Scholar 

  6. Daimaruya, M., Naitoh, M.: Dispersion and energy-dissipation of thermoelastic waves in a plate. J. Sound Vib. 117, 511–518 (1987)

    Article  Google Scholar 

  7. Daimaruya, M., Naitoh, M.: Dispersion and energy-dissipation of thermoelastic waves in a circular-cylinder. Acustica 51, 124–130 (1982)

    Google Scholar 

  8. Erbay, S., Suhubi, E.S.: Longitudinal-wave propagation in a generalized thermoelastic cylinder. J. Therm. Stresses 9, 279–295 (1986)

    Article  Google Scholar 

  9. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nanomechanical systems. Phys. Rev. B 61, 5600–5609 (2000)

    Article  Google Scholar 

  10. Norris, A.N., Photiadis, D.M.: Thermoelastic relaxation in elastic structures, with applications to thin plates. Q. J. Mech. Appl. Mech. 58, 143–163 (2005)

    Article  MathSciNet  Google Scholar 

  11. Metcalf, T.H., Pate, B.B., Photiadis, D.M., Houston, B.H.: Thermoelastic damping in micromechanical resonators. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3190509

    Article  Google Scholar 

  12. Mohanty, P., Harrington, D.A., Ekinci, K.L., Yang, Y.T., Murphy, M.J., Roukes, M.L.: Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B 66, 085416 (2002)

    Article  Google Scholar 

  13. Zhou, H.Y., Shao, D.F., Li, P.: Thermoelastic damping and frequency shift in micro/nano-ring resonators considering the nonlocal single-phase-lag effect in the thermal field. Appl. Math. Model. 115, 237–258 (2023)

    Article  MathSciNet  Google Scholar 

  14. Xu, X., Li, S.: Analysis of thermoelastic damping for functionally graded material micro-beam, Chinese. J. Theor. Appl. Mech. 49, 308–316 (2017)

    Google Scholar 

  15. Li, S.: Thermoelastic damping in functionally graded mindlin rectangular micro plates, Chinese. J. Theor. Appl. Mech. 54, 1601–1612 (2022)

    Google Scholar 

  16. Luo, Z., Li, P., Fang, Y.: Thermoelastic damping in hollow bilayered microbeam with circular cross-section. J. Vib. Shock 40, 278 (2021)

    Google Scholar 

  17. Unlu, H.: A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors. Solid-State Electron. 35, 1343–1352 (1992)

    Article  Google Scholar 

  18. Vasilev, A.N., Sandomirskii, V.B.: photoacoustic effects in finite semiconductors. Soviet Phys. Semicond.-Ussr 18, 1095–1099 (1984)

    Google Scholar 

  19. Kühn, G, Landolt‐Börnstein, H: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie, Gruppe III: Kristall‐ und Festkörperphysik Bd. 17: Halbleiter, Teilband d: Technologie von III—V, II—VI und nicht‐tetraedrisch gebundenen Verbindungen. Herausgegeben von M. Schulz und H. Weiss. Springer‐Verlag Berlin, Heidelberg, New York, Tokyo, 429 Seiten, 446 Abbildungen, zahlreiche Tabellen und Literaturzitate. Preis: DM 750.00. ISBN 3–540–11779–2, Crystal Research and Technology, 20, 898–898, (2006)

  20. Mandelis, A., Nestoros, M., Christofides, C.: Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures. Opt. Eng. 36, 459–468 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Natural Science Foundation of China [Grant Number: 62074125] and Innovative Scientific Program of CNNC.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaqin Song.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Song, Y., Gu, S. et al. Study on thermal elastic damping of micro-scale semiconductor beams. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03957-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03957-4

Navigation