Skip to main content
Log in

A new direct approach for evaluating the wheel-rail contact stiffness, including surface roughness and hardening effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Nowadays, the dynamic behavior of rolling stocks is an essential problem. In dynamic simulation, the correct wheel-rail contact modeling is an important task. In this paper, the stiffness of the wheel-rail contact zone is found by a new, direct, and simplified formulation. This subject is developed by applying more details, such as surface roughness based on the surface topography and hardening effects of a real contact problem. These characteristics have not been considered altogether in other similar works. In this work, the contact stiffness and frequency results are obtained for different material properties and verified with analytical and experimental research. It is shown that the presented new direct method with an acceptable accuracy is easier to use than the complicated existing methods. This paper discusses the effects of contact parameter variations on contact stiffness and frequency. For example, it is shown that the contact stiffness decreases by increasing the surface roughness and increases by increasing the strain-hardening factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 156–171 (1992)

    Google Scholar 

  2. Nayak, P.R.: Contact vibrations. J. Sound Vibrat. 22(3), 297–322 (1972)

    Article  Google Scholar 

  3. Nayak, P.R.: Some aspects of surface roughness measurement. Wear 26, 165–174 (1973)

    Article  Google Scholar 

  4. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A (1966). https://doi.org/10.1098/1966.0242

    Article  Google Scholar 

  5. Chang, W.R., Etsion, I., Bogy, D.B.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. (1987). https://doi.org/10.1115/1.3261348

    Article  Google Scholar 

  6. Kogut, L., Etsion, I.: A finite element-based elastic-plastic model for the contact of rough surfaces. Model. Simul. Eng. (2011). https://doi.org/10.1155/2011/561828

    Article  Google Scholar 

  7. Abdo, J., Farhang, K.: Elastic-Plastic contact model for rough surfaces based on plastic asperity concept. Int. J. Near Mech. (2005). https://doi.org/10.1016/j.ijnonlinmec.2004.08.003

    Article  Google Scholar 

  8. Zhao, Y., Maietta, D.M., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. (2000). https://doi.org/10.1115/1.555332

    Article  Google Scholar 

  9. Brake, M.R.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. (2012). https://doi.org/10.1016/j.ijsolstr.2012.06.013

    Article  Google Scholar 

  10. Ghaednia, H., Wang, X., Saha, S., Xu, Y., Sharma, A., Jackson, R.L.: A review of elastic-plastic contact mechanics. Appl. Mech. Rev. (2018). https://doi.org/10.1115/1.4041537

    Article  Google Scholar 

  11. Gao, Z., Fu, W., Wang, W., Kang, W.: The study of anisotropic rough surfaces contact considering lateral contact and interaction between asperities. Tribol. Int. (2018). https://doi.org/10.1016/j.triboint.2018.01.056

    Article  Google Scholar 

  12. Li, C., Wang, G.: A modified Greenwood-Williamson contact model with asperity interactions. J. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03538-x

    Article  MathSciNet  Google Scholar 

  13. Xiao, H., Sun, Y.: On the normal contact stiffness and contact resonance frequency of rough surface contact based on asperity micro-contact statistical models. Eur. J. Mech./A Solids (2019). https://doi.org/10.1016/j.euromechsol.2019.03.004

    Article  MathSciNet  Google Scholar 

  14. Xiao, H., Shao, Y., Brennan, M.J.: On the contact stiffness and nonlinear vibration of an elastic body with a rough surface in contact with a rigid flat surface. Eur. J. Mech./A Solids (2015). https://doi.org/10.1016/j.euromechsol.2014.08.005

    Article  Google Scholar 

  15. Li, C., Ding, Y., Liang, X., Wang, G.: An improved elastic-plastic contact model with asperity interactions based on Greenwood-Williamson theory. J. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03662-8

    Article  MathSciNet  Google Scholar 

  16. Gao, Z., Fu, W., Wang, W.: Normal contact damping model of mechanical interface considering asperity shoulder to shoulder contact and interaction. J. Acta Mech. (2019). https://doi.org/10.1007/s00707-019-02392-0

    Article  MathSciNet  Google Scholar 

  17. Wei, C., Zhu, H., Lang, S.: A Modified complete normal contact stiffness model of a fractal surface considering contact friction. Int. J. App. Mech. (2020). https://doi.org/10.1142/S0218348X20500814

    Article  Google Scholar 

  18. Sun, J., Ji, Z., Zhang, Y., Yu, Q., Ma, C.: A contact mechanics model for rough surfaces based on a new fractal characterization method. Int. J. App. Mech. (2018). https://doi.org/10.1142/S1758825118500692

    Article  Google Scholar 

  19. Pohrt, R., Popov, V.L.: Normal contact stiffness of elastic solids with fractal rough surfaces. Phys. Rev. Lett. (2012). https://doi.org/10.1103/PhysRevLett.108.104301

    Article  PubMed  Google Scholar 

  20. Pohrt, R., Popov, V.L., Filippov, A.E.: Normal contact stiffness of elastic solids with fractal rough surfaces for one-and three-dimensional systems. Phys. Rev. (2012). https://doi.org/10.1103/PhysRevE.86.026710

    Article  Google Scholar 

  21. Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. (2011). https://doi.org/10.1103/PhysRevLett.106.204301

    Article  PubMed  Google Scholar 

  22. Campana, C., Muser, M.H.: Practical green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.075420

    Article  Google Scholar 

  23. Lorenz, B., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter (2009). https://doi.org/10.1088/0953-8984/21/1/015003

    Article  PubMed  Google Scholar 

  24. Amini Sarabi, M., Hosseini Tehrani, P.: A new analytical-numerical model for contact problem counting asperities and strain-hardening effects. Proc. Inst. Mech. E Part C (2023). https://doi.org/10.1177/09544062231152710

    Article  Google Scholar 

  25. Brake, M.R.: An analytical elastic-perfectly plastic contact model with strain-hardening and frictional effects for normal and oblique impacts. Int. J. Solids Struct. (2015). https://doi.org/10.1016/j.ijsolstr.2015.02.018

    Article  Google Scholar 

  26. Meyer, E.: Untersuchen über hrteprüfung und hrte brinell methoden (Studies on hardness testing and the Brinell hardness method). Z. Ver. Dtsch. Ing. 52, 645–654 (1908)

    CAS  Google Scholar 

  27. Amini Sarabi, M., Hosseini Tehrani, P.: A new combined model for considering the plasticity effects in contacting asperities. Math. Probl. Eng. (2020). https://doi.org/10.1155/2020/4640204

    Article  Google Scholar 

  28. Gonzalez-Valadez, M., Baltazar, A., Dwyer-Joyce, R.S.: Study of the interfacial stiffness ratio of a rough surface in contact using a spring model. Wear (2010). https://doi.org/10.1016/j.wear.2009.08.022

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parisa Hossein Tehrani.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini Sarabia, M., Hossein Tehrani, P. A new direct approach for evaluating the wheel-rail contact stiffness, including surface roughness and hardening effects. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03904-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03904-3

Navigation