Skip to main content

Advertisement

Log in

Crack growth optimization using eddy current testing and genetic algorithm for estimating the stress intensity factors

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study developed a procedure for rapidly reconstructing a crack profile for calculating the parameters of fracture mechanics such as stress intensity factor with energy release rate (J) and displacement opening crack tip using data from the eddy current sensor. The inverse problem focused on adopting genetic algorithms to solve the direct problem iteratively. The use of the differential probe allows a rapid and precise resolution of the direct problem. The incident field produced by the two coils is determined using the 3D finite element results and the variation of impedance in each coil due to the crack. For the inverse problem, the crack’s surface is considered regular shape in terms of dimensions, and the sensor’s impedance expresses the objective function in terms of the width and length of the crack. The evaluation of the shape function and mesh matrix is made dependent on the iterative process, which makes the reversal procedure computationally lightweight when using genetic algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yao, L., Jiang, G., Wu, F., Luo, J.: An optimized finite element method for the analysis of 3D acoustic cavities with impedance boundary conditions. Appl. Math. Model. 84, 447–465 (2020). https://doi.org/10.1016/j.apm.2020.04.012

    Article  MathSciNet  Google Scholar 

  2. Tong, Z., Xie, S., Liu, H., Zhang, W., Pei, C., Li, Y., Chen, Z., Uchimoto, T., Takagi, T.: An efficient electromagnetic and thermal modelling of eddy current pulsed thermography for quantitative evaluation of blade fatigue cracks in heavy-duty gas turbines. Mech. Syst. Signal Process. 142, 106781 (2020). https://doi.org/10.1016/j.ymssp.2020.106781

    Article  Google Scholar 

  3. Tong, Z., Xie, S., Chen, H., Qiu, J., Cai, W., Pei, C., Chen, Z., Uchimoto, T., Takagi, T.: Quantitative mapping of depth profile of fatigue cracks using eddy current pulsed thermography assisted by PCA and 2D wavelet transformation. Mech. Syst. Signal Process. 175, 109139 (2022). https://doi.org/10.1016/j.ymssp.2022.109139

    Article  Google Scholar 

  4. Ju, S., Li, D., Jia, J.: Machine-learning-based methods for crack classification using acoustic emission technique. Mech. Syst. Signal Process. 178, 109253 (2022). https://doi.org/10.1016/j.ymssp.2022.109253

    Article  Google Scholar 

  5. Guesmi, M., Harzallah, S., Kouzou, A.: New non-destructive testing approach based on eddy current for crack orientation detection and parameter estimation. Int. J. Appl. Electromagn. Mech.Electromagn. Mech. 67(4), 431–451 (2021). https://doi.org/10.3233/JAE-210049

    Article  Google Scholar 

  6. Harzallah, S., Chabaat, M.: 3D Eddy current modeling for evaluating the fracture parameters by new method based on the variation of the impedance ». Int. J. Appl. Electromagn. Mech.Electromagn. Mech. 53(2), 371–385 (2017)

    Article  Google Scholar 

  7. Lavers, J.D., Ahmed, M.R.: A boundary element method to predict the shape of a molten metal free surface in EM confinement field. IEEE Trans. Magn.Magn. 24(6), 2521–2523 (1988)

    Article  Google Scholar 

  8. Racheka, M., Féliachi, M.: 3-D movement simulation techniques using FE methods: application to eddy current non-destructive testing. NDT&E Int. 40, 35–42 (2007)

    Article  Google Scholar 

  9. Ratnajeevan, S., Hoole, H., Karthik, V.U., Sivasuthan, S., Rahunanthan, A., Thyagarajan, R., Jayakumar, P.: Finite elements, design optimization, and non-destructive evaluation: a review in magnetics, and future directions in GPU-based, element-b yelement coupled optimization and NDE. Int. J. Appl. Electromagn. Mech.Electromagn. Mech. 47(3), 607–627 (2015)

    Article  Google Scholar 

  10. Cormerais, R., Longo, R., Duclos, A., Wasselynck, G., Berthiau, G.: Non destructive eddy currents inversion using artificial neural networks and data augmentation. NDT&E Int. 129, 102635 (2022). https://doi.org/10.1016/j.ndteint.2022.102635

    Article  Google Scholar 

  11. Ge, J., Yusa, N., Fan, M.: Frequency component mixing of pulsed or multi-frequency eddy current testing for nonferromagnetic plate thickness measurement using a multi-gene genetic programming algorithm. NDT&E Int. 120, 102423 (2021). https://doi.org/10.1016/j.ndteint.2021.102423

    Article  Google Scholar 

  12. Yi, Q., Tian, G.Y., Malekmohammadi, H., Laureti, S., Ricci, M., Gao, S.: Inverse reconstruction of fibre orientation in multilayer CFRP using forward FEM and eddy current pulsed thermography. NDT&E Int. 122, 102474 (2021). https://doi.org/10.1016/j.ndteint.2021.102474

    Article  Google Scholar 

  13. Zaoui, A., Menana, H., Feliachi, M., Berthiau, G.: Inverse problem in nondestructive testing using arrayed eddy current sensors. Sensors 10, 8696–8704 (2010). https://doi.org/10.3390/s100908696

    Article  Google Scholar 

  14. Abbassi, A., Bouchala, T., Abdou, A., et al.: Eddy current characterization of 3D crack by analyzing probe signal and using a fast algorithm search. Russ. J. Nondestruct. Test.Nondestruct. Test. 56, 426–434 (2020). https://doi.org/10.1134/S106183092005002

    Article  Google Scholar 

  15. D’Angelo, G., Palmieri, F.: Knowledge elicitation based on genetic programming for non destructive testing of critical aerospace systems. Future Gener. Comput. Syst. 102, 633–642 (2020). https://doi.org/10.1016/j.future.2019.09.007

    Article  Google Scholar 

  16. Wang, Z., Ye, P., Qiu, F., Tian, G., Woo, W.L.: Crack characterization in ferromagnetic steels by pulsed eddy current technique based on GA-BP neural network model. J. Magn. Magn. Mater.Magn. Magn. Mater. 500, 166412 (2020). https://doi.org/10.1016/j.jmmm.2020.166412

    Article  Google Scholar 

  17. Westergaard, H.M.: New formulas for stresses in concrete pavements of airfields. Trans. Amer. Soc. Civil Eng. 113(1), 425–439 (1948). https://doi.org/10.1061/TACEAT.0006179

    Article  Google Scholar 

  18. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. Ser. A 221, 163–198 (1920)

    Google Scholar 

  19. Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957)

    Article  Google Scholar 

  20. Sih, G.C., Paris, P.C., Irwin, G.R.: On cracks in rectilinearly anisotropic bodies. Int. J. Fract. Mech.Fract. Mech. 1, 189–203 (1965)

    Article  Google Scholar 

  21. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  22. Stepanova, L., Bronnikov, S.: Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading. J. Phys. Conf. Ser. 973(1), 012046 (2018)

    Article  Google Scholar 

  23. Bernieri, A., Ferrigno, L., Laracca, M., Molinara, M.: Crack shape reconstruction in eddy current testing using machine learning systems for regression. IEEE Trans. Instrum. Meas.Instrum. Meas. 57(9), 1958–1968 (2008)

    Article  Google Scholar 

  24. ASTM E1820-11: Standard test Method for Measurement of Fracture Toughness. American Society for Testing and Materials, West Conshohocken (2011)

    Google Scholar 

  25. Gholami, M., Fathi, A., Baghestani, A.M.: Multi-objective optimal structural design of composite superstructure using a novel MONMPSO algorithm. Int. J. Mech. Sci. 193, 106149 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106149.a

    Article  Google Scholar 

  26. Wu, K., Hu, H., Wang, L., Gao, Y.: Parametric optimization of an aperiodic metastructure based on genetic algorithm. Int. J. Mech. Sci. 214, 106878 (2022). https://doi.org/10.1016/j.ijmecsci.2021.106878

    Article  Google Scholar 

  27. Pokkalla, D.K., Poh, L.H., Quek, S.T.: Isogeometric shape optimization of missing rib auxetics with prescribed negative Poisson’s ratio over large strains using genetic algorithm. Int. J. Mech. Sci. 193, 106169 (2021). https://doi.org/10.1016/j.ijmecsci.2020.106169

    Article  Google Scholar 

  28. Mondal, M.K., Biswas, N., Datta, A., Sarkar, B.K., Manna, N.K.: Positional impacts of partial wall translations on hybrid nanofluid flow in porous media: real coded genetic algorithm (RCGA). Int. J. Mech. Sci. 217, 107030 (2022). https://doi.org/10.1016/j.ijmecsci.2021.107030

    Article  Google Scholar 

  29. Nath, A., Ray, K.K., Barai, S.V.: Evaluation of ratcheting behaviour in cyclically stable steels through use of a combined kinematic-isotropic hardening rule and a genetic algorithm optimization technique. Int. J. Mech. Sci. 152, 138–150 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.047

    Article  Google Scholar 

  30. Ehsani, A., Rezaeepazhand, J.: Stacking sequence optimization of laminated composite grid plates for maximum buckling load using genetic algorithm. Int. J. Mech. Sci. 119, 97–106 (2016). https://doi.org/10.1016/j.ijmecsci.2016.09.028

    Article  Google Scholar 

  31. Holland, J.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput.Comput. 2(2), 88–105 (1973)

    Article  MathSciNet  Google Scholar 

  32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st edn. Addison-Wesley Professional, Reading (1989)

    Google Scholar 

  33. Yang, X.-S., Chien, S.F., Ting, T.O.: Chapter 1—Bio-inspired computation and optimization: an overview. In: Yang, X.-S., Chien, S.F., Ting, T.O. (eds.) Bio-inspired Computation in Telecommunications, pp. 1–21. Morgan Kaufmann, Burlington (2015)

    Google Scholar 

  34. Guo, Y., Cai, Q., Samuels, D.C., et al.: The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation. Mutat. Res. Genet. Toxicol. Environ. Mutagen.. Res. Genet. Toxicol. Environ. Mutagen. 744(2), 154–160 (2012)

    Article  Google Scholar 

  35. Pham, T.D., Hong, W.-K.: Genetic algorithm using probabilistic-based natural selections and dynamic mutation ranges in optimizing precast beams. Comput. Struct.. Struct. 258, 106681 (2022). https://doi.org/10.1016/j.compstruc.2021.106681

    Article  Google Scholar 

  36. Bielefeldt, B.R., Reich, G.W., Beran, P.S., Hartl, D.J.: Development and validation of a genetic L-System programming framework for topology optimization of multifunctional structures. Comput. Struct.. Struct. 218, 152–169 (2019). https://doi.org/10.1016/j.compstruc.2019.02.005

    Article  Google Scholar 

  37. Katoch, S., Chauhan, S.S., Kumar, V.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80, 8091–8126 (2021). https://doi.org/10.1007/s11042-020-10139-6

    Article  Google Scholar 

  38. Shrestha, A., Mahmood, A.: Improving genetic algorithm with fine-tuned crossover and scaled architecture. J. Math. 2016, 10 (2016). https://doi.org/10.1155/2016/4015845

    Article  MathSciNet  Google Scholar 

  39. Hassanat, A., Almohammadi, K., Alkafaween, E.A., Abunawas, E., Hammouri, A., Prasath, V.S.: Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information 10(12), 390 (2019). https://doi.org/10.3390/info10120

    Article  Google Scholar 

  40. Ali, M.Z., Awad, N.H., Suganthan, P.N., Shatnawi, A.M., Reynolds, R.G.: An improved class of real-coded genetic algorithms for numerical optimization. Neurocomputing 275, 155–166 (2018)

    Article  Google Scholar 

  41. Cho, I.H., Song, I., Teng, Y.L.: Numerical moment matching stabilized by a genetic algorithm for engineering data squashing and fast uncertainty quantification. Comput. Struct.. Struct. 204, 31–47 (2018). https://doi.org/10.1016/j.compstruc.2018.04.002

    Article  Google Scholar 

  42. Preda, G., Rebican, M., Hantila, F.I.: Integral formulation and genetic algorithms for defects geometry reconstruction using pulse eddy currents. IEEE Trans. Magn.Magn. 46(8), 3433–3436 (2010). https://doi.org/10.1109/TMAG.2010.2044143

    Article  Google Scholar 

  43. Pan, L., Xu, W., Li, L., He, C., Cheng, R.: Adaptive simulated binary crossover for rotated multi-objective optimization. Swarm Evol. Comput.Evol Comput 60, 100759 (2021). https://doi.org/10.1016/j.swevo.2020.100759

    Article  Google Scholar 

  44. Lin, J., Huang, S., Jiau, M.: An evolutionary multiobjective carpool algorithm using set-based operator based on simulated binary crossover. IEEE Trans Cybern 49(9), 3432–3442 (2019). https://doi.org/10.1109/TCYB.2018.2844324

    Article  Google Scholar 

  45. Yi, J.-H., Xing, L.-N., Wang, G.-G., Dong, J., Vasilakos, A.V., Alavi, A.H., Wang, L.: Behavior of crossover operators in NSGA-III for large-scale optimization problems. Inf. Sci. Sci 509, 470–487 (2020). https://doi.org/10.1016/j.ins.2018.10.005

    Article  MathSciNet  Google Scholar 

  46. Jiang, Q., Wang, L., Hei, X., Yu, G., Lin, Y., Lu, X.: MOEA/D- ARA+SBX: a new multi-objective evolutionary algorithm based on decomposition with artificial raindrop algorithm and simulated binary crossover. Knowl Based Syst 107, 197–218 (2016). https://doi.org/10.1016/j.knosys.2016.06.007

    Article  Google Scholar 

  47. Harzallah, S., Chabaat, M.: 3D-FEM computation and experimental of Eddy currents for characterization of surface cracks. Int. J. Struct. Integr. (2017). https://doi.org/10.1108/IJSI-02-2017-0013

    Article  Google Scholar 

  48. Harzallah, S., Rebhi, R., Chabaat, M., Rabehi, A.: Eddy current modelling using multi-layer perceptron neural networks for detecting surface cracks. Frattura Integr. Strut. 45, 147–155 (2018). https://doi.org/10.3221/IGF-ESIS.45.12

    Article  Google Scholar 

  49. Augustyniak, M., Usarek, Z.: Finite element method applied in electromagnetic NDTE: a review. J. Nondestruct. Eval.Nondestruct. Eval. 35, 39 (2016). https://doi.org/10.1007/s10921-016-0356-6

    Article  Google Scholar 

  50. Sidi-Ahmed, K., Maouche, B., Gabi, Y., Alloui, L., Straß, B., Wolter, B., Feliachi, M.: Numerical simulations and experimental investigation of laser hardening depth investigation via 3MA-eddy current technique. J. Magn. Magn. Mater.Magn. Magn. Mater. 550, 169046 (2022). https://doi.org/10.1016/j.jmmm.2022.169046

    Article  Google Scholar 

  51. Tong, Z., Xie, S., Li, X., Pei, C., Chen, Z., He, Y.: Efficient numerical simulation of eddy current pulsed thermography NDT signals based on FEM-BEM method and energy equivalent principle. Infrared Phys. Technol. 101, 138–145 (2019). https://doi.org/10.1016/j.infrared.2019.06.009

    Article  Google Scholar 

  52. Gay, S.E., Ehsani, M.: Parametric analysis of eddy-current brake performance by 3-D finite- element analysis. IEEE Trans. Magn.Magn. 42(2), 319–328 (2006)

    Article  Google Scholar 

  53. Huang, R., Lu, M., Peyton, A., Yin, W.: A novel perturbed matrix inversion based method for the acceleration of finite element analysis in crack-scanning eddy current NDT. IEEE Access 8, 12438–12444 (2020). https://doi.org/10.1109/ACCESS.2020.2966032

    Article  Google Scholar 

  54. Harzallah, S., Chabaat, M., Chabane, K.: Numerical study of eddy current by finite element method for cracks detection in structures. Frattura Integr. Strut. 11(39), 282–290 (2017)

    Article  Google Scholar 

  55. GhafooriAhangar, R., Verreman, Y.: Assessment of mode I and mode Ii stress intensity factors obtained by displacement extrapolation and interaction integral methods. J Fail. Anal. Preven. 19, 85–97 (2019). https://doi.org/10.1007/s11668-018-0571-9

    Article  Google Scholar 

  56. Sabbagh-Yazdi, S.R., Farhoud, A., Gharebaghi, S.A.: Simulation of 2D linear crack growth under constant load using GFVM and two-point displacement extrapolation method. Appl. Math. Model. 61, 650–667 (2018). https://doi.org/10.1016/j.apm.2018.05.022

    Article  MathSciNet  Google Scholar 

  57. Xie, G., Zhou, F., Zhang, D., Wen, X., Li, H.: A novel triangular boundary crack front element for 3D crack problems based on 8-node serendipity element. Eng. Anal. Bound. Elem. 105, 296–302 (2019). https://doi.org/10.1016/j.enganabound.2019.04.017

    Article  MathSciNet  Google Scholar 

  58. Soman, S., et al.: A simple technique for estimation of mixed mode (I/II) stress intensity factors. J. Mech. Mater. Struct.Struct. 13, 141–154 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Funding was provided by Direction Générale de la Recherche Scientifique et du Développement Technologique (Grant No. 3234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salaheddine Harzallah.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aouissi, M., Harzallah, S. & Cheddad, A. Crack growth optimization using eddy current testing and genetic algorithm for estimating the stress intensity factors. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03903-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03903-4

Navigation