Skip to main content
Log in

Reflection and transmission of plane wave at the interface between two distinct nonlocal triclinic micropolar generalized thermoelastic half spaces under DPL and LS theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this model, we have examined the problem of plane wave reflection and transmission occurring at the interface between two distinct nonlocal triclinic micropolar generalized thermoelastic half-spaces. It is evident that when an incident quasi-P (\(q_{P}\)) wave encounters the interface between two dissimilar half-spaces, distinct waves emerges in the form of reflected and transmitted coupled quasi-P \((C_{qP})\), coupled quasi-SV \((C_{qSV})\), coupled quasi-SH \((C_{qSH})\), coupled quasi-thermal \((C_{qT})\), and coupled quasi-transverse micro-rotational \((C_{qTM})\) waves, each possessing unique phase speed. Through the imposition of appropriate boundary conditions, we have derived the expressions for phase speed, reflection/transmission coefficients and energy ratios associated with the reflected and transmitted waves which depends on the nonlocal and micro-polar parameter, elastic properties of material and incident angle. To gain the behaviour of these parameters on reflection and transmission phenomena, we have conducted numerical simulations using MATLAB programming. The results have been presented graphically which provides a visual representation of nonlocal and micropolar parameters on phase speed and reflection/transmission coefficients as well as on the energy ratios of different waves under dual phase lag (DPL) and Lord–Shulman (LS) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Muskat, M., Meres, M.W.: Reflection and transmission coefficients for plane waves in elastic media. Geophysics 5(2), 115–148 (1940)

    Google Scholar 

  2. Borejko, P.: Reflection and transmission coefficients for three-dimensional plane waves in elastic media. Wave Motion 24(4), 371–393 (1996)

    MathSciNet  Google Scholar 

  3. Achenbach, J.D.: Wave Propagation in Elastic Solids. North Holland Publishing Co., New York (1973)

    Google Scholar 

  4. Ainslie, M.A.: Plane-wave reflection and transmission coefficients for a three-layered elastic medium. J. Acoust. Soc. Am. 97(2), 954–961 (1995)

    Google Scholar 

  5. Guha, S., Singh, A.K.: Effects of initial stresses on reflection phenomenon of plane waves at the free surface of a rotating piezothermoelastic fiber-reinforced composite half-space. Int. J. Mech. Sci. 181, 105766 (2020)

    Google Scholar 

  6. Guha, S., Singh, A.K.: Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces. Eur. J. Mech.-A/Solids 88, 104242 (2021)

    MathSciNet  Google Scholar 

  7. Guha, S., Singh, A.K.: Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space. Mech. Adv. Mater. Struct. 29(27), 5758–5772 (2022)

    Google Scholar 

  8. Singh, A.K., Guha, S.: Mathematical study of reflection and transmission phenomenon of plane waves at the interface of two dissimilar initially stressed rotating micro-mechanically modeled piezoelectric fiber-reinforced composite half-spaces. In: Chakraverty, S. (ed.) Wave Dynamics, pp. 131–162. World Scientific, Singapore (2022)

    Google Scholar 

  9. Guha, S., Singh, A. K., On-plane waves reflecting at the impedance boundary of an initially stressed micromechanically modeled piezomagnetic fiber-reinforced composite half-space. In: Mechanics of Advanced Materials and Structures, pp. 1–18 (2023) https://doi.org/10.1080/15376494.2023.2251194

  10. Deresiewicz, H.: Plane waves in a thermoelastic solid. J. Acoust. Soc. Am. 29(2), 204–209 (1957)

    MathSciNet  Google Scholar 

  11. Lebon, G., Lambermont, J.: A consistent thermodynamic formulation of the field equations for elastic bodies removing the paradox of infinite speed of propagation of thermal signals. J. Mecanique 15(4), 579–594 (1976)

    MathSciNet  Google Scholar 

  12. P. Chadwick, Thermoelasticity. The Dynamical Theory, Progress in Solid Mechanics, Vol. 1, North-Holland, Amsterdam (1960), pp. 263–328.

  13. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Google Scholar 

  14. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Google Scholar 

  15. Chandrasekharaiah, D.S., Srikantiah, K.R.: Thermoelastic plane waves in a rotating solid. Acta Mech. 50(3–4), 211–219 (1984)

    Google Scholar 

  16. Ahmad, F., Khan, A.: Thermoelastic plane waves in a rotating isotropic medium. Acta Mech. 136, 243–247 (1999)

    Google Scholar 

  17. Chandrasekharaiah, D.S.: Hyperbolic thermoelasticity: a review of recent literature. Appl. Mech. Rev. 51(12), 705–729 (1998)

    Google Scholar 

  18. RoyChoudhuri, S.K.: One-dimensional thermoelastic waves in elastic half-space with dual phase-lag effects. J. Mech. Mater. Struct. 2(3), 489–503 (2007)

    Google Scholar 

  19. Deswal, S., Sheokand, S.K., Kalkal, K.K.: Reflection at the free surface of fiber-reinforced thermoelastic rotating medium with two-temperature and phase-lag. Appl. Math. Model. 65, 106–119 (2019)

    MathSciNet  Google Scholar 

  20. Kalkal, K.K., Deswal, S.: Effects of phase lags on three-dimensional wave propagation with temperature-dependent properties. Int. J. Thermophys. 35, 952–969 (2014)

    Google Scholar 

  21. Kumar, R., Gupta, V.: Dual-phase-lag model of wave propagation at the interface between elastic and thermoelastic diffusion media. J. Eng. Phys. Thermophys. 88, 252–265 (2015)

    Google Scholar 

  22. Othman, M.I., Atwa, S.Y., Elwan, A.W.: The effect of phase lag and gravity field on generalized thermoelastic medium in two and three dimensions. J. Comput. Theor. Nanosci. 13(5), 2827–2837 (2016)

    Google Scholar 

  23. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  Google Scholar 

  24. Eringen, A.C.: Theory of micropolar elasticity, chapter 7. In: Liebowitz, H. (ed.) Fracture, an Advanced Treatise, vol. 2. Academic Press, New York (1968)

    Google Scholar 

  25. Eringen, A.C.: Theory of Micropolar Elasticity, pp. 101–248. Springer, New York (1999)

    Google Scholar 

  26. Chandrasekharaiah, D.S.: Heat-flux dependent micropolar thermoelasticity. Int. J. Eng. Sci. 24(8), 1389–1395 (1986)

    Google Scholar 

  27. Kumar, R., Gupta, R.R.: Propagation of waves in transversely isotropic micropolar generalized thermoelastic half space. Int. Commun. Heat Mass Transf. 37(10), 1452–1458 (2010)

    Google Scholar 

  28. Gupta, R.R.: Wave propagation in micropolar monoclinic thermoelastic half space. Int. J. Appl. Mech. Eng. 18(4), 1013–1023 (2013)

    MathSciNet  Google Scholar 

  29. Manna, S., Jain, A., Pramanik, D.: The reflection of plane waves in a micropolar fiber-reinforced thermoelastic medium under impedance boundary condition. Eur. Phys. J. Plus 138(11), 1–19 (2023)

    Google Scholar 

  30. Manna, S., Bhat, M.: Love wave fields in a non-local elastic model with reinforced and inhomogeneous media. Soil Dyn. Earthq. Eng. 161, 107388 (2022)

    Google Scholar 

  31. Bhat, M., Manna, S., Alkinidri, M.: Rayleigh wave fields in a multilayered micropolar media. Int. J. Geomech. 24(4), 04024026 (2024)

    Google Scholar 

  32. Edelen, D.G.B., Green, A.E., Laws, N.: Continuum nonlocal mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)

    Google Scholar 

  33. Eringen, A.C., Edelen, D.: On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    MathSciNet  Google Scholar 

  34. Chakraborty, A.: Wave propagation in anisotropic media with non-local elasticity. Int. J. Solids Struct. 44(17), 5723–5741 (2007)

    Google Scholar 

  35. Sahrawat, R. K., Poonam, Kumar, K.: Plane wave and fundamental solution in non-local couple stress micropolar thermoelastic solid without energy dissipation. J. Thermal Stresses, 44(3), 295-314 (2020)

  36. Poonam, Sahrawat, R.K., Kumar, K.: Plane wave propagation and fundamental solution in non-local couple stress micropolar thermoelastic solid medium with voids. In: Waves Random Complex Media. Taylor and Francis (2021) https://doi.org/10.1080/17455030.2021.1921312

  37. Sahrawat, R.K., Kumar, K., Poonam, Rani, S.: Reflection and refraction phenomenon of waves at the interface of two non-local couple stress micropolar thermoelastic solid half-spaces. Mech. Solids 58(1), 216–244 (2023)

    Google Scholar 

  38. Gupta, M., Mukhopadhyay, S.: A study on generalized thermoelasticity theory based on non-local heat conduction model with dual-phase-lag. J. Therm. Stress. 42(9), 1123–1135 (2019)

    Google Scholar 

  39. Kumar, R., Sheoran, D., Thakran, S., Kalkal, K.K.: Waves in a nonlocal micropolar thermoelastic half-space with voids under dual-phase-lag model. In: Waves in Random and Complex Media, pp. 1–20 (2021) https://doi.org/10.1080/17455030.2021.1984612

  40. Malik, S., Gupta, D., Kumar, K., Sharma, R.K., Jain, P.: Reflection and transmission of plane waves in nonlocal generalized thermoelastic solid with diffusion. Mech. Solids 58(1), 161–188 (2023)

    Google Scholar 

  41. Khurana, A., Tomar, S.K.: Waves at interface of dissimilar nonlocal micropolar elastic half-spaces. Mech. Adv. Mater. Struct. 26(10), 825–833 (2019)

    Google Scholar 

  42. Sharma, D. K., Sarkar, N., Bachher, M.: Interactions in a nonlocal thermoelastic hollow sphere with voids due to harmonically varying heat sources. In: Waves in Random and Complex Media, pp. 1-16 (2021) https://doi.org/10.1080/17455030.2021.2005846

  43. Das, N., De, S., Sarkar, N.: Reflection of plane waves in generalized thermoelasticity of type III with nonlocal effect. Math. Methods Appl. Sci. 43(3), 1313–1336 (2020)

    MathSciNet  Google Scholar 

  44. Sheoran, D., Kumar, R., Punia, B.S., Kalkal, K.K.: Propagation of waves at an interface between a nonlocal micropolar thermoelastic rotating half-space and a nonlocal thermoelastic rotating half-space. In: Waves in Random and Complex Media, pp. 1–22 (2022) https://doi.org/10.1080/17455030.2022.2087118

  45. Singh, P., Singh, A.K., Chattopadhyay, A.: Reflection of three-dimensional plane waves at the free surface of a rotating triclinic half-space under the context of generalized thermoelasticity. Appl. Math. Mech. 42(9), 1363–1378 (2021)

    MathSciNet  Google Scholar 

  46. Rasolofosaon, P.N.J., Zinszner, B.E.: Comparison between permeability anisotropy and elasticity anisotropy of reservoir rocks. J. Geophys. 67(1), 230–240 (2002)

    Google Scholar 

  47. Chattopadhyay, A.: Reflection for three-dimensional plane waves in triclinic crystalline medium. Appl. Math. Mech. 28, 1309–1318 (2007)

    MathSciNet  Google Scholar 

  48. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2009)

    Google Scholar 

Download references

Acknowledgements

The corresponding author is grateful to Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India for support under "Research Seed Money Grant Scheme" and is also thankful to the Department of Science and Technology, New Delhi, India for providing support under FIST program (Ref. No. SR/FST/MS-I/2022/122 dated 19 December 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijendra Paswan.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}{} & {} \frac{C_{12}}{C_{11}}=a_{1}, ~\frac{C_{13}}{C_{11}}=a_{2}, \frac{C_{14}}{C_{11}}=a_{3}, ~\frac{C_{15}}{C_{11}}=a_{4}, ~\frac{C_{16}}{C_{11}}=a_{5}, ~\frac{C_{26}}{C_{11}}=a_{6}, ~\frac{C_{36}}{C_{11}}=a_{7}, ~\frac{C_{46}}{C_{11}}=a_{8}, ~\frac{C_{56}}{C_{11}}=a_{9},\\{} & {} \frac{C_{66}}{C_{11}}=a_{10}, ~\frac{C_{25}}{C_{11}}=a_{11}, ~\frac{C_{35}}{C_{11}}=a_{12}, ~\frac{C_{45}}{C_{11}}=a_{13}, ~\frac{C_{55}}{C_{11}}=a_{14}, ~\frac{C_{22}}{C_{11}}=a_{15}, ~\frac{C_{23}}{C_{11}}=a_{16}, ~\frac{C_{24}}{C_{11}}=a_{17}, \\{} & {} \frac{C_{34}}{C_{11}}=a_{18}, ~\frac{C_{44}}{C_{11}}=a_{19}, ~\frac{C_{33}}{C_{11}}=a_{20}. \\{} & {} L_{1}=a_{5}\left( p_{1}^{(n)}\right) ^{2}+a_{13}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{3}+a_{9}\right) p_{1}^{(n)}p_{3}^{(n)},~~D_{1}=\left( p_{1}^{(n)}\right) ^{2}+a_{14}\left( p_{3}^{(n)}\right) ^{2}+2a_{14}p_{1}^{(n)}p_{3}^{(n)},\\{} & {} L_{2}=a_{4}\left( p_{1}^{(n)}\right) ^{2}+a_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{2}+a_{14}\right) p_{1}^{(n)}p_{3}^{(n)},~~L_{4}=b_{2}p_{1}^{(n)}\vartheta ^{*}\left( \tau ''+\left( c^{2}\eta \tau _{q}^{2}\right) /2\right) \\{} & {} D_{2}=a_{10}\left( p_{1}^{(n)}\right) ^{2}+a_{19}\left( p_{3}^{(n)}\right) ^{2}+2a_{8}p_{1}^{(n)}p_{3}^{(n)},~~D_{3}=a_{14}\left( p_{1}^{(n)}\right) ^{2}+a_{20}\left( p_{3}^{(n)}\right) ^{2}+2a_{12}p_{1}^{(n)}p_{3}^{(n)},\\{} & {} L_{3}=a_{9}\left( p_{1}^{(n)}\right) ^{2}+a_{18}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{7}+a_{13}\right) p_{1}^{(n)}p_{3}^{(n)},~~\vartheta ^{*}=\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \\{} & {} D_{4}=B_{77}\left( p_{1}^{(n)}\right) ^{2}+B_{66}\left( p_{3}^{(n)}\right) ^{2}, ~~D_{5}=\left( \left( p_{1}^{(n)}\right) ^{2}+b_{1}\left( p_{3}^{(n)}\right) ^{2}\right) \tau ',\\{} & {} L_{5}=b_{3}p_{3}^{(n)}\vartheta ^{*}\left( \tau ''+\left( c^{2}\eta \tau _{q}^{2}\right) /2\right) \\{} & {} \Delta _{0}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =\Gamma _{22}(n)\Gamma _{33}(n)\Gamma _{44}(n)\Gamma _{55}(n)+\Gamma _{22}(n)\Gamma _{35}(n)\Gamma _{44}(n)\Gamma _{53}(n)-\Gamma _{32}(n)\Gamma _{23}(n)\Gamma _{44}(n)\Gamma _{55}(n),\\{} & {} \Delta _{1}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =\Gamma _{44}(n)\Gamma _{21}(n)\Gamma _{33}(n)\Gamma _{55}(n)+\Gamma _{44}(n)\Gamma _{35}(n)\Gamma _{53}(n)\Gamma _{21}(n)-\Gamma _{44}(n)\Gamma _{23}(n)\Gamma _{31}(n)\Gamma _{55}(n)\\{} & {} \qquad \qquad \qquad \qquad +\Gamma _{44}(n)\Gamma _{23}(n)\Gamma _{51}(n)\Gamma _{35}(n),\\{} & {} \Delta _{2}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =\Gamma _{21}(n)\Gamma _{32}(n)\Gamma _{44}(n)\Gamma _{55}(n)-\Gamma _{22}(n)\Gamma _{31}(n)\Gamma _{44}(n)\Gamma _{55}(n)+\Gamma _{22}(n)\Gamma _{51}(n)\Gamma _{35}(n)\Gamma _{44}(n),\\{} & {} \Delta _{3}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =0,\\ {}{} & {} \Delta _{4}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =-\Gamma _{21}(n)\Gamma _{32}(n)\Gamma _{44}(n)\Gamma _{53}(n)+\Gamma _{31}(n)\Gamma _{22}(n)\Gamma _{44}(n)\Gamma _{53}(n)+\Gamma _{51}(n)\Gamma _{44}(n)\Gamma _{22}(n)\Gamma _{33}(n)\\{} & {} \qquad \qquad \qquad \qquad -\Gamma _{51}(n)\Gamma _{44}(n)\Gamma _{23}(n)\Gamma _{32}(n) \end{aligned}$$
$$\begin{aligned}{} & {} \Gamma _{11}(n)=\left( p_{1}^{(n)}\right) ^{2}+a_{14}\left( p_{3}^{(n)}\right) ^{2}+2a_{14}p_{1}^{(n)}p_{3}^{(n)}-\rho c_{n}^{2}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) ,~~\Gamma _{23}(n)=\Gamma _{32}(n),\\{} & {} \Gamma _{31}(n)=\Gamma _{13}(n),~~\Gamma _{12}(n)=a_{5}\left( p_{1}^{(n)}\right) ^{2}+a_{13}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{3}+a_{9}\right) p_{1}^{(n)}p_{3}^{(n)},\\{} & {} \Gamma _{13}(n)=a_{4}\left( p_{1}^{(n)}\right) ^{2}+a_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{2}+a_{14}\right) p_{1}^{(n)}p_{3}^{(n)},\\{} & {} \Gamma _{15}(n)=\beta _{1}p_{1}^{(n)}, ~~\Gamma _{21}(n)=\Gamma _{12}(n),\\{} & {} \Gamma _{22}(n)=a_{10}\left( p_{1}^{(n)}\right) ^{2}+a_{19}\left( p_{3}^{(n)}\right) ^{2}+2a_{8}p_{1}^{(n)}p_{3}^{(n)}-\rho c_{n}^{2}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) ,\\{} & {} \Gamma _{31}(n)=a_{4}\left( p_{1}^{(n)}\right) ^{2}+a_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a_{2}+a_{14}\right) p_{1}^{(n)}p_{3}^{(n)}\\{} & {} \Gamma _{33}(n)=a_{14}\left( p_{1}^{(n)}\right) ^{2}+a_{20}\left( p_{3}^{(n)}\right) ^{2}+2a_{12}p_{1}^{(n)}p_{3}^{(n)}-\rho c_{n}^{2}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \\{} & {} \Gamma _{35}(n)=\beta _{3}p_{3}^{(n)},~~\Gamma _{44}(n)=\left( B_{77}\left( p_{1}^{(n)}\right) ^{2}+B_{66}\left( p_{3}^{(n)}\right) ^{2}-J\rho c_{n}^{2}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \right) \\{} & {} \Gamma _{55}(n)=\left( \left( p_{1}^{(n)}\right) ^{2}+b_{1}\left( p_{3}^{(n)}\right) ^{2}\right) \tau '-ik\zeta \rho \left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \\{} & {} \Gamma _{51}(n)=b_{2}p_{1}^{(n)}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \left( \tau ''+c_{n}^{2}\tau _{q}^{2}/2\right) \\{} & {} \Gamma _{53}(n)=b_{3}p_{3}^{(n)}\left( 1-\epsilon ^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \left( \tau ''+c_{n}^{2}\tau _{q}^{2}/2\right) \end{aligned}$$

Appendix B

$$\begin{aligned}{} & {} \frac{C'_{12}}{C'_{11}}=a'_{1}, ~\frac{C'_{13}}{C'_{11}}=a'_{2}, ~\frac{C'_{14}}{C'_{11}}=a'_{3}, ~\frac{C'_{15}}{C'_{11}}=a'_{4}, ~\frac{C'_{16}}{C'_{11}}=a'_{5},\frac{C'_{26}}{C'_{11}}=a'_{6},\frac{C'_{36}}{C'_{11}}=a'_{7}, ~\frac{C'_{46}}{C'_{11}}=a'_{8}, ~\frac{C'_{56}}{C'_{11}}=a'_{9},\\{} & {} \frac{C'_{66}}{C_{11}}=a'_{10}, ~\frac{C'_{25}}{C'_{11}}=a'_{11}, ~\frac{C'_{35}}{C'_{11}}=a'_{12}, ~\frac{C'_{45}}{C'_{11}}=a'_{13}, ~\frac{C'_{55}}{C'_{11}}=a'_{14}, ~\frac{C'_{22}}{C'_{11}}=a'_{15}, ~\frac{C'_{23}}{C'_{11}}=a'_{16}, ~\frac{C'_{24}}{C'_{11}}=a'_{17}, \\{} & {} \frac{C'_{34}}{C'_{11}}=a'_{18}, ~\frac{C'_{44}}{C'_{11}}=a'_{19}, ~\frac{C'_{33}}{C'_{11}}=a'_{20} \\{} & {} L_{6}=a'_{5}\left( p_{1}^{(n)}\right) ^{2}+a'_{13}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{3}+a'_{9}\right) p_{1}^{(n)}p_{3}^{(n)},~~D_{6}=\left( p_{1}^{(n)}\right) ^{2}+a'_{14}\left( p_{3}^{(n)}\right) ^{2}+2a'_{14}p_{1}^{(n)}p_{3}^{(n)},\\{} & {} L_{7}=a'_{4}\left( p_{1}^{(n)}\right) ^{2}+a'_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{2}+a'_{14}\right) p_{1}^{(n)}p_{3}^{(n)},~~L_{9}=b'_{2}p_{1}^{(n)}\vartheta ^{*}\left( \tau ''+\left( c^{2}\eta ' {\tau '_{q}}^{2}\right) /2\right) \\{} & {} D_{7}=a'_{10}\left( p_{1}^{(n)}\right) ^{2}+a'_{19}\left( p_{3}^{(n)}\right) ^{2}+2a'_{8}p_{1}^{(n)}p_{3}^{(n)},~~D_{8}=a'_{14}\left( p_{1}^{(n)}\right) ^{2}+a'_{20}\left( p_{3}^{(n)}\right) ^{2}+2a'_{12}p_{1}^{(n)}p_{3}^{(n)},\\{} & {} L_{8}=a'_{9}\left( p_{1}^{(n)}\right) ^{2}+a'_{18}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{7}+a'_{13}\right) p_{1}^{(n)}p_{3}^{(n)},~~\vartheta '^{*}=\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \\{} & {} {D_{9}}={B'_{77}}\left( p_{1}^{(n)}\right) ^{2}+{B'_{66}}\left( p_{3}^{(n)}\right) ^{2}, ~~{D_{10}}=\left( \left( p_{1}^{(n)}\right) ^{2}+b'_{1} \left( p_{3}^{(n)}\right) ^{2}\right) \tau ',\\{} & {} L_{10}=b'_{3}\vartheta '^{*}p_{3}^{(n)}\left( \tau '' +\left( c'^{2} \eta ' {\tau '_{q}}^{2}\right) /2\right) \\{} & {} \Delta _{5}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =\Gamma '_{44}(n)\Gamma '_{21}(n)\Gamma '_{33}(n)\Gamma '_{55}(n)+\Gamma '_{44}(n)\Gamma '_{35}(n)\Gamma '_{53}(n)\Gamma '_{21}(n)-\Gamma '_{44}(n)\Gamma '_{23}(n)\Gamma '_{31}(n)\Gamma '_{55}(n)\\{} & {} \qquad \qquad \qquad \qquad \quad +\Gamma '_{44}(n)\Gamma '_{23}(n)\Gamma '_{51}(n)\Gamma '_{35}(n),\\{} & {} \Delta _{6}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =\Gamma '_{21}(n)\Gamma '_{32}(n)\Gamma '_{44}(n)\Gamma '_{55}(n)-\Gamma '_{22}(n)\Gamma '_{31}(n)\Gamma '_{44}(n)\Gamma '_{55}(n)+\Gamma '_{22}(n)\Gamma '_{51}(n)\Gamma '_{35}(n)\Gamma '_{44}(n),\\{} & {} \Delta _{7}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =0,\\ {}{} & {} \Delta _{8}\left( p_{1}^{(n)},p_{3}^{(n)}\right) =-\Gamma '_{21}(n)\Gamma '_{32}(n)\Gamma '_{44}(n)\Gamma '_{53}(n)+\Gamma '_{31}(n)\Gamma '_{22}(n)\Gamma '_{44}(n)\Gamma '_{53}(n)+\Gamma '_{51}(n)\Gamma '_{44}(n)\Gamma '_{22}(n)\Gamma '_{33}(n)\\{} & {} \qquad \qquad \qquad \qquad \quad -\Gamma '_{51}(n)\Gamma '_{44}(n)\Gamma '_{23}(n)\Gamma '_{32}(n) \end{aligned}$$
$$\begin{aligned}{} & {} \Gamma '_{11}(n)=\left( p_{1}^{(n)}\right) ^{2}+a'_{14}\left( p_{3}^{(n)}\right) ^{2}+2a'_{14}p_{1}^{(n)}p_{3}^{(n)}-\rho ' c_{n}^{2}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) ,\\{} & {} \Gamma '_{12}(n)=a'_{5}\left( p_{1}^{(n)}\right) ^{2}+a'_{13}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{3}+a'_{9}\right) p_{1}^{(n)}p_{3}^{(n)},\\{} & {} \Gamma '_{13}(n)=a'_{4}\left( p_{1}^{(n)}\right) ^{2}+a'_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{2}+a'_{14}\right) p_{1}^{(n)}p_{3}^{(n)},~~\Gamma '_{15}(n)=\beta '_{1}p_{1}^{(n)}, ~~\Gamma '_{21}(n)=\Gamma '_{12}(n),\\{} & {} \Gamma '_{22}(n)=a'_{10}\left( p_{1}^{(n)}\right) ^{2}+a'_{19}\left( p_{3}^{(n)}\right) ^{2}+2a'_{8}p_{1}^{(n)}p_{3}^{(n)}-\rho ' c_{n}^{2}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) ,\\{} & {} \Gamma '_{31}(n)=a'_{4}\left( p_{1}^{(n)}\right) ^{2}+a'_{12}\left( p_{3}^{(n)}\right) ^{2}+\left( a'_{2}+a'_{14}\right) p_{1}^{(n)}p_{3}^{(n)}\\{} & {} \Gamma '_{23}(n)=\Gamma '_{32}(n),~\Gamma '_{31}(n)=\Gamma '_{13}(n), \\{} & {} \Gamma '_{33}(n)=a'_{14}\left( p_{1}^{(n)}\right) ^{2}+a'_{20}\left( p_{3}^{(n)}\right) ^{2}+2a'_{12}p_{1}^{(n)}p_{3}^{(n)}-\rho ' c_{n}^{2}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \\{} & {} \Gamma '_{35}(n)=\beta '_{3}p_{3}^{(n)},\\{} & {} \Gamma '_{44}(n)=\left( B'_{77}\left( p_{1}^{(n)}\right) ^{2}+B'_{66}\left( p_{3}^{(n)}\right) ^{2}-J' \rho ' c_{n}^{2}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \right) \\{} & {} \Gamma '_{55}(n)=\left( \left( \left( p_{1}^{(n)}\right) ^{2}+b'_{1}\left( p_{3}^{(n)}\right) ^{2}\right) \tau '-ik \rho ' \left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \right) \\{} & {} \Gamma '_{51}(n)=b'_{2} p_{1}^{(n)}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \left( \tau ''+c_{n}^{2}{\tau '_{q}}^{2}/2\right) \\{} & {} \Gamma '_{53}(n)=b'_{3}p_{3}^{(n)}\left( 1-\epsilon '^{2}\left( \left( p_{1}^{(n)}\right) ^{2}+\left( p_{3}^{(n)}\right) ^{2}\right) \right) \left( \tau ''+c_{n}^{2}{\tau '_{q}}^{2}/2\right) \end{aligned}$$
$$\begin{aligned} {\left\{ \begin{array}{ll} &{}g_{1j}=1 ~(j=1,2,3,4,5); ~g_{1j}=-1 ~\left( j=6,7,8,9,10\right) ;\\ &{}g_{2j}=\frac{V_{j}}{V_{0}} ~(j=1,2,3,4,5); ~g_{2j}=-\frac{V_{j}}{V_{0}} ~\left( j=6,7,8,9,10\right) \\ &{}g_{3j}=\frac{W_{j}}{W_{0}} ~(j=1,2,3,4,5); ~g_{3j}=-\frac{W_{j}}{W_{0}} ~\left( j=6,7,8,9,10\right) ; ~g_{4j}=\frac{F_{j}}{F_{0}} ~~(j=1,2,3,4,5); \\ &{}g_{4j}=-\frac{F_{j}}{F_{0}} ~\left( j=6,7,8,9,10\right) ; ~~g_{5j}=\frac{G_{j}}{G_{0}} ~(j=1,2,3,4,5); ~g_{5j}=-\frac{G_{j}}{G_{0}} ~~\left( j=6,7,8,9,10\right) ;\\ &{}g_{6j}=\left\{ a_{4}p_{1}^{(n)}+a_{9}\left( p_{1}^{(n)}+a_{13}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a_{12}+a_{14}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}+\kappa _{1}F_{j}\right\} ~~(j,n=1,2,3,4,5);\\ &{}g_{6j}=-\left\{ a'_{4}p_{1}^{(n)}+a'_{9}\left( p_{1}^{(n)}+a'_{13}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a'_{12}+a'_{14}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}+\kappa '_{1}F_{j}\right\} ~~(j,n=6,7,8,9,10);\\ &{}g_{7j}=\left\{ a_{3}p_{1}^{(n)}+\left( a_{8}p_{1}^{(n)}+a_{19}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a_{13}+a_{18}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}+\kappa _{3}F_{j}\right\} ~~(j,n=1,2,3,4,5);\\ &{}g_{7j}=-\left\{ a'_{3}p_{1}^{(n)}+\left( a'_{8}p_{1}^{(n)}+a'_{19}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a'_{13}+a'_{18}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}+\kappa '_{3}F_{j}\right\} ~~(j,n=6,7,8,9,10);\\ &{}g_{8j}=\left\{ a_{2}p_{1}^{(n)}+\left( a_{7}p_{1}^{(n)}+a_{18}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a_{12}+a_{20}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}-\beta _{33}G_{j}\right\} ~(j,n=1,2,3,4,5);\\ &{}g_{8j}=-\left\{ a'_{2}p_{1}^{(n)}+\left( a'_{7}p_{1}^{(n)}+a'_{18}p_{3}^{(n)}\right) V_{j}+\left\{ \left( a'_{12}+a'_{20}\right) p_{3}^{(n)}+p_{1}^{(n)}\right\} W_{j}-\beta '_{33}G_{j}\right\} ~(j,n=6,7,8,9,10);\\ &{}g_{9j}=B_{66}p_{3}^{(n)}F_{j} ~~(j,n=1,2,3,4,5); ~g_{9j}=-B'_{66}p_{3}^{(n)}F_{j} ~~(j,n=6,7,8,9,10);\\ &{}g_{10j}=K_{3}p_{3}^{(n)}G_{j} ~~(j,n=1,2,3,4,5); ~g_{10j}=-K'_{3}p_{3}^{(n)}G_{j} ~~(j,n=6,7,8,9,10);\\ &{}f_{1}= f_{2}= f_{3}= f_{4}= f_{5}=-1,\\ &{}f_{6}= -\left\{ a_{4}p_{1}^{(0)}+a_{9}\left( p_{1}^{(0)}+a_{13}p_{3}^{(0)}\right) V_{0}+\left\{ \left( a_{12}+a_{14}\right) p_{3}^{(0)}+p_{1}^{(0)}\right\} W_{0}+\kappa _{1}F_{0}\right\} , \\ &{}f_{7}=-\left\{ a_{3}p_{1}^{(0)}+\left( a_{8}p_{1}^{(0)}+a_{19}p_{3}^{(0)}\right) V_{0}+\left\{ \left( a_{13}+a_{18}\right) p_{3}^{(0)}+p_{1}^{(0)}\right\} W_{0}+\kappa _{3}F_{0}\right\} , ~f_{9}=-B_{66}p_{3}^{(0)}F_{0},\\ &{}f_{8}=-\left\{ a_{2}p_{1}^{(0)}+\left( a_{7}p_{1}^{(0)}+a_{18}p_{3}^{(0)}\right) V_{0}+\left\{ \left( a_{12}+a_{20}\right) p_{3}^{(0)}+p_{1}^{(0)}\right\} W_{0}-\beta _{33}G_{0}\right\} , ~f_{10}=-K_{3}p_{3}^{(0)}G_{0}\\ &{}P_{j}^{*}= \left\{ g_{6j}+g_{7j}V_{j}+g_{8j}W_{j}+g_{9j}F_{j}+K_{3}\right\} ; ~(j=1,2,3,4,5)\\ &{}P_{j}^{*}= \left\{ g_{6j}+g_{7j}V_{j}+g_{8j}W_{j}+g_{9j}F_{j}+K'_{3}\right\} ; ~\left( j=6,7,8,9,10\right) \end{array}\right. } \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Paswan, B., Singh, P. et al. Reflection and transmission of plane wave at the interface between two distinct nonlocal triclinic micropolar generalized thermoelastic half spaces under DPL and LS theory. Acta Mech 235, 3245–3270 (2024). https://doi.org/10.1007/s00707-024-03893-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03893-3

Navigation