Skip to main content
Log in

Research on the tunability of longitudinal wave resonance rainbow trapping in the periodic non-uniform magnetostrictive rods

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The rainbow trapping effect, characterized by the presence of multiple band gaps (BGs) and wave energy accumulation, holds great promise in applications such as wave filters and vibration energy harvesters. To achieve the tunability of longitudinal wave propagation and further enhanced energy localization, a thickness-induced periodic array of magnetostrictive rods with the rainbow trapping effect is designed in this paper. Firstly, the analysis of longitudinal wave propagation in a periodic non-uniform magnetostrictive rod is conducted using the differential quadrature method, and the correctness is validated by comparing theoretical results with finite element simulations performed for various thickness profiles. Subsequently, according to the combined BGs caused by the proposed metamaterial rods, the formation mechanism of longitudinal wave rainbow trapping is analyzed by time and frequency domain analysis, respectively. Furthermore, the variations in resonance rainbow trapping frequencies are investigated considering the magneto-mechanics coupling in the periodic non-uniform magnetostrictive rods. Numerical simulations demonstrate that resonance rainbow trapping frequencies lead to the most pronounced vibration localization compared to initial and cut-off rainbow trapping frequencies. Notably, the resonance rainbow trapping frequency can be significantly manipulated through applied magnetic field and compressive pre-stress. Those conspicuous phenomena from proposed magnetostrictive metamaterial rods are expected to provide engineers with a new avenue to construct tunable wave filters and vibration signal amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Article  Google Scholar 

  2. Yu, D.L., Liu, Y.Z., Zhao, H.G., Wang, G., Qiu, J.: Flexural vibration band gaps in Euler-Bernoulli beams with two-degree-of-freedom locally resonant structures. Phys. Rev. B 73, 064301 (2006)

    Article  Google Scholar 

  3. Wen, J.H., Wang, G., Yu, D.L., Zhao, H.G., Liu, Y.Z.: Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: application to a vibration isolation structure. J. Appl. Phys. 97(11), 114907 (2005)

    Article  Google Scholar 

  4. Mei, J., Ma, G.C., Yang, M., Yang, Z.Y., Wen, W.J., Sheng, P.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3(1), 756 (2012)

    Article  Google Scholar 

  5. Li, P., Biwa, S.: Flexural waves in a periodic non-uniform Euler-Bernoulli beam: Analysis for arbitrary contour profiles and applications to wave control. Int. J. Mech. Sci. 188, 105948 (2020)

    Article  Google Scholar 

  6. Beli, D., Arruda, J.R.F., Ruzzene, M.: Wave propagation in elastic metamaterial beams and plates with interconnected resonators. Int. J. Solids Struct. 139, 105–120 (2018)

    Article  Google Scholar 

  7. Deng, T., Zhang, S.Z., Gao, Y.W.: Tunability of band gaps and energy harvesting based on the point defect in a magneto-elastic acoustic metamaterial plate. Appl. Phys. Exp. 13, 015503 (2020)

    Article  Google Scholar 

  8. Cho, S., Yang, W., Lee, S., Park, J.: Flexural wave cloaking via embedded cylinders with systematically varying thicknesses. J. Acoust. Soc. Am. 139(6), 3320–3324 (2016)

    Article  Google Scholar 

  9. Sang, S., Sandgren, E., Wang, Z.P.: Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial. Acta Mech. 229(6), 2561–2569 (2018)

    Article  Google Scholar 

  10. Ruan, Y.D., Liang, X., Hu, C.J.: Retroreflection of flexural wave by using elastic metasurface. J. Appl. Phys. 128(4), 045116 (2020)

    Article  Google Scholar 

  11. Yu, R., Wang, H.L., Chen, W.C., Zhu, C.L., Wu, D.W.: Latticed underwater acoustic Luneburg lens. Appl. Phys. Exp. 13(8), 084003 (2020)

    Article  Google Scholar 

  12. Yan, M., Liu, J.Y., Li, F., Deng, W.Y., Huang, X.Q., Ma, J.H., Liu, Z.Y.: On-chip valley topological materials for elastic wave manipulation. Nat. Mater. 17, 993–998 (2018)

    Article  Google Scholar 

  13. Zhang, Z.X., Fan, L.Y., Meng, F., Huang, X.D.: Topological design of phononic band gap crystals with sixfold symmetric hexagonal lattice. Comput. Mater. Sci. 139, 97–105 (2017)

    Article  Google Scholar 

  14. Li, Y., Jin, Y.B.: Research progress on metamaterials for wave function regulation. Acta Materiae Compositae Sinica 39(9), 4259–4273 (2022)

    Google Scholar 

  15. Sui, F.H., Chen, J.J., Huang, H.B.: Tunable topological edge states and rainbow trapping in two dimensional magnetoelastic phononic crystal plates based on an external magnetostatic field. Int. J. Mech. Sci. 225, 107360 (2022)

    Article  Google Scholar 

  16. Qian, Z.H., Jin, F., Kishimoto, K., Wang, Z.K.: Effect of initial stress on the propagation behavior of SH-waves in multilayered piezoelectric composite structures. Sens. Actuator A-Phys. 112(2–3), 368–375 (2004)

    Article  Google Scholar 

  17. Qian, Z.H., Jin, F., Wang, Z.K., Kishimoto, K.: Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. Int. J. Eng. Sci. 42(7), 673–689 (2004)

    Article  Google Scholar 

  18. Allam, A., Sabra, K., Erturk, A.: 3D-printed gradient-index phononic crystal lens for underwater acoustic wave focusing. Phys. Rev. Appl. 13(6), 064064 (2020)

    Article  Google Scholar 

  19. Zhu, J., Chen, W.Q., Yang, J.S.: Propagation of thickness-twist waves in elastic plates with periodically varying thickness and phononic crystals. Ultrasonics 54(7), 1899–1903 (2014)

    Article  Google Scholar 

  20. Tol, S., Degertekin, F.L., Erturk, A.: 3D-printed phononic crystal lens for elastic wave focusing and energy harvesting. Addit. Manuf. 29, 100780 (2019)

    Google Scholar 

  21. Sang, S., Sandgren, E., Wang, Z.P.: Wave attenuation and negative refraction of elastic waves in a single-phase elastic metamaterial. Acta Mech. 229, 2561–2569 (2018)

    Article  Google Scholar 

  22. Shen, Y.Z., Xu, Y.L., Liu, F., Wang, F.L., Yang, Z.C.: 3D-printed meta-slab for focusing flexural waves in broadband. Extreme Mech. Lett. 48, 101410 (2021)

    Article  Google Scholar 

  23. Li, P., Jin, F.: The investigation of trapped thickness shear modes in a contoured AT-cut quartz plate using the power series expansion technique. J. Phys. D Appl. Phys. 51(1), 015301 (2017)

    Article  Google Scholar 

  24. Li, P., Chen, L.: Shear horizontal wave propagation in a periodic stubbed plate and its application in rainbow trapping. Ultrasonics 84, 244–253 (2017)

    Article  Google Scholar 

  25. Ash, B.J., Worsfold, S.R., Vukusic, P., Nash, G.R.: A highly attenuating and frequency tailorable annular hole phononic crystal for surface acoustic waves. Nat. Commun. 8(1), 174 (2017)

    Article  Google Scholar 

  26. Tang, L.L., Chen, L., Chen, K.: Complete sub-wavelength flexural wave band gaps in plates with periodic acoustic black holes. J. Sound Vibr. 502, 116102 (2021)

    Article  Google Scholar 

  27. Cui, X.D., Zhao, J.F., Boyko, O., Bonello, B., Zhong, Z.: Multi-branch subwavelength focusing of the lowest-order antisymmetric Lamb mode in a gradient-index phononic crystal. Int. J. Mech. Sci. 157, 677–683 (2019)

    Article  Google Scholar 

  28. Climente, A., Torrent, D., Sanchez-Dehesa, J.: Gradient index lenses for flexural waves based on thickness variations. Appl. Phys. Lett. 105(6), 064101 (2014)

    Article  Google Scholar 

  29. Zareei, A., Darabi, A., Leamy, M.J., Alam, M.: Continuous profile flexural GRIN lens: focusing and harvesting flexural waves. Appl. Phys. Lett. 112(2), 023901 (2018)

    Article  Google Scholar 

  30. Zhu, J., Chen, Y.Y., Zhu, X.F., Garcia-Vidal, F., Yin, X.B., Zhang, W.L., Zhang, X.: Acoustic rainbow trapping. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  31. Ni, X., Wu, Y., Chen, Z.G., Zheng, L.Y., Xu, Y.L., Nayar, P., Liu, X.P., Lu, M.H., Chen, Y.F.: Acoustic rainbow trapping by coiling up space. Sci. Rep. 4(1), 7038 (2014)

    Article  Google Scholar 

  32. Lewinska, M.A., van Dommelen, J.A.W., Kouznetsova, V.G., Geers, M.G.D.: Broadening the attenuation range of acoustic metafoams through graded microstructures. J. Sound Vibr. 483, 115472 (2020)

    Article  Google Scholar 

  33. Meng, H., Chronopoulos, D., Fabro, A.T., Elmadih, W., Maskery, I.: Rainbow metamaterials for broadband multi- frequency vibration attenuation: numerical analysis and experimental validation. J. Sound Vibr. 465, 115005 (2020)

    Article  Google Scholar 

  34. Wang, B., Huang, Y., Zhou, W.J., Yang, Z.B.: Metamaterial beam for flexural wave resonance rainbow trapping and piezoelectric energy harvesting. J. Appl. Phys. 129(6), 064505 (2021)

    Article  Google Scholar 

  35. De Ponti, J.M., Colombi, A., Riva, E., Ardito, R., Braghin, F., Corigliano, A., Craster, R.V.: Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting. Appl. Phys. Lett. 117(14), 143902 (2020)

    Article  Google Scholar 

  36. Zhang, J., Zhang, X.B., Zhang, H., Bi, X.Y., Hu, N., Zhang, C.Z.: Rainbow zigzag metamaterial beams as broadband vibration isolators for beam-like structures. J. Sound Vibr. 530, 116945 (2022)

    Article  Google Scholar 

  37. Xue, X.W., Li, P., Jin, F.: Refraction behavior investigation and focusing control of phononic crystals under external magnetic fields. Ultrasonics 96, 261–266 (2019)

    Article  Google Scholar 

  38. Ren, T., Liu, C.C., Li, F.M., Zhang, C.Z.: Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech. 231, 4035–4053 (2020)

    Article  MathSciNet  Google Scholar 

  39. Lei, F.M., Chen, Z.X., Gu, C.L., Ma, L.S., Gao, Y.W.: Propagation characteristics of Love waves in a layered piezomagnetic structure. Acta Mech. 234(10), 5101–5113 (2023)

    Article  Google Scholar 

  40. Zheng, X.J., Liu, X.E.: A nonlinear constitutive model for Terfenol-D rods. J. Appl. Phys. 97(5), 053901 (2005)

  41. Gu, C.L., Jin, F.: Research on the tunability of point defect modes in a two-dimensional magneto-elastic phononic crystal. J. Phys. D Appl. Phys. 49(17), 175103 (2016)

    Article  Google Scholar 

  42. Xue, X.W., Li, P., Jin, F.: The tunable one-way transmission of Lamb waves by using giant magnetostrictive materials. Appl. Phys. Exp. 14, 044002 (2021)

    Article  Google Scholar 

  43. Zhang, S.Z., Shi, Y., Gao, Y.W.: A mechanical-magneto-thermal model for the tunability of band gaps of epoxy/Terfenol-D phononic crystals. J. Appl. Phys. 118, 034101 (2015)

    Article  Google Scholar 

  44. Zhang, S.Z., Shu, S.W., Bian, X.H.: Tunability for anomalous refraction of flexural wave in a magneto-elastic metasurface by magnetic field and pre-stress. Appl. Phys. Exp. 15(2), 027003 (2022)

    Article  Google Scholar 

  45. Zhang, G., Gao, Y.W.: A three-dimensional magnetoelastic valley Hall insulator with tunable elastic wave route and frequency. J. Appl. Phys. 132, 224108 (2022)

    Article  Google Scholar 

  46. Gopalakrishnan, S., Raut, M.S.: Longitudinal wave propagation in one-dimensional waveguides with sinusoidally varying depth. J. Sound Vibr. 463, 114945 (2019)

    Article  Google Scholar 

  47. Banerjee, J.R., Ananthapuvirajah, A.: Free flexural vibration of tapered beams. Comput. Struct. 224, 106106 (2019)

    Article  Google Scholar 

  48. Auciello, N.M., Ercolano, A.: Exact solution for the transverse vibration of a beam a part of which is a taper beam and other part is a uniform beam. Int. J. Solids Struct. 34(17), 2115–2129 (1997)

    Article  Google Scholar 

  49. Bert, C.W., Malik, M.: Differential quadrature method in computational mechanics: a review. Appl. Mech. Rev. 49(1), 1–28 (1996)

    Article  Google Scholar 

  50. Karami, G., Malekzadeh, P.: A new differential quadrature methodology for beam analysis and the associated differential quadrature element method. Comput. Meth. Appl. Mech. Eng. 191(32), 3509–3526 (2002)

    Article  Google Scholar 

  51. Zhao, L.K., Jin, F.: The adjustment of electro-elastic properties in non-uniform flexoelectric semiconductor nanofibers. Acta Mech. 234, 975–990 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China (Grant No. 12072253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, T., Zhao, L. & Jin, F. Research on the tunability of longitudinal wave resonance rainbow trapping in the periodic non-uniform magnetostrictive rods. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03887-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03887-1

Navigation