Skip to main content
Log in

Noether theorem and its inverse for nonstandard generalized Chaplygin systems

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the Noether theorems and their inverse theorems for generalized Chaplygin systems with two types of nonstandard Lagrangians, related to exponential and power-law Lagrangian, are explored and presented. The variational principles for the Chaplygin systems with nonstandard Lagrangian are derived, and the generalized Chaplygin equations for the corresponding systems are established, the Noether transformations are considered, from which the corresponding conserved quantities are deduced. And their inverse theorems for nonstandard generalized Chaplygin systems are given. Two examples show the validity of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  1. Noether, A.E.: Invariante variationsprobleme. Nachr. Akad. Wiss. Gott. Math. Phys. 2, 235–237 (1918)

    Google Scholar 

  2. Djukić, D.S., Vujanović, B.D.: Noether theory in classical nonconservative mechanics. Acta Mech. 23, 17–27 (1975)

    ADS  MathSciNet  Google Scholar 

  3. Mei, F.X.: Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Science Press, Beijing (1999). (in Chinese)

    Google Scholar 

  4. Li, Z.P.: The transformation properties of constrained system. Acta Phys. Sin. 20(12), 1659–1671 (1981). (in Chinese)

    MathSciNet  Google Scholar 

  5. Liu, D.: Noether’s theorem and its inverse of nonholonomic nonconservative dynamical systems. Sci. China Ser. A 34(4), 419–429 (1991)

    ADS  MathSciNet  Google Scholar 

  6. Borisov, A.V., Mamaev, I.S.: Symmetries and reduction in nonholonomic mechanics. Regul. Chaotic Dyn. 20(5), 553–604 (2015)

    ADS  MathSciNet  Google Scholar 

  7. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Anal. Appl. 334(2), 834–846 (2007)

    MathSciNet  Google Scholar 

  8. Atanacković, T.M., Konjik, S., et al.: Variational problems with fractional derivatives: invariance conditions and Noether’s theorem. Nonlinear Anal. 71, 1504–1517 (2009)

    MathSciNet  Google Scholar 

  9. Zhou, S., Fu, H., Fu, J.L.: Symmetry theories of Hamiltonian systems with fractional derivatives. Sci. Chin. Phys. Mech. Astron. 54(10), 1847–1853 (2011)

    ADS  Google Scholar 

  10. Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, 469–480 (2015)

    MathSciNet  Google Scholar 

  11. Tian, X., Zhang, Y.: Fractional time-scales Noether theorem with Caputo derivatives for Hamiltonian systems. Appl. Math. Comput. 393, 125753 (2021)

    MathSciNet  Google Scholar 

  12. Frederico, G.S.F., Torres, D.F.M.: Noether’s symmetry theorem for variational and optimal control problems with time delay. Numer. Algebra Control Optim. 2(3), 619–630 (2012)

    MathSciNet  Google Scholar 

  13. Zhai, X.H., Zhang, Y.: Noether symmetries and conserved quantities for Birkhoffian systems with time delay. Nonlinear Dyn. 77, 73–86 (2014)

    MathSciNet  Google Scholar 

  14. Zhang, Y., Jin, S.X.: Noether symmetries of dynamics for non-conservative systems with time delay. Acta Phys. Sin. 62(23), 214502 (2013). (in Chinese)

    Google Scholar 

  15. Jin, S.X., Zhang, Y.: Noether symmetries for nonconservative Lagrange systems with time delay based on fractional model. Nonlinear Dyn. 79(2), 1169–1183 (2015)

    CAS  Google Scholar 

  16. Santos, S.P.S., Martins, N., Torres, D.F.M.: An optimal control approach to Herglotz variational problems. In: Plakhov, A., Tchemisova, T., Freitas, A. (eds.) Optimization in the Natural Sciences. Communications in Computer and Information Science, vol. 499. Springer, Cham (2015)

    Google Scholar 

  17. Zhang, Y.: Herglotz’s variational problem for non-conservative system with delayed arguments under Lagrangian framework and its Noether’s theorem. Symmetry 12, 845 (2020)

    ADS  Google Scholar 

  18. Bartosiewicz, Z., Torres, D.F.M.: Noether’s theorem on time scales. J. Math. Anal. Appl. 342, 1220–1226 (2008)

    MathSciNet  Google Scholar 

  19. Anerot, B., Cresson, J., et al.: Noether’s-type theorems on time scales. J. Math. Phys. 61, 113502 (2020)

    ADS  MathSciNet  Google Scholar 

  20. Jin, S.X., Zhang, Y.: Noether theorem for generalized Chaplygin system on time scales. Ind J. Phys. 93(7), 883–890 (2019)

    CAS  Google Scholar 

  21. Zhang, Y.: Lie symmetry and invariants for a generalized birkhoffian system on time scales. Chaos Soliton Fract 128, 306–312 (2019)

    ADS  MathSciNet  Google Scholar 

  22. Zhang, Y.: Mei’s symmetry theorem for time scales nonshifted mechanical systems. Theor. Appl. Mech. Let. 11(5), 100286 (2021)

    Google Scholar 

  23. Naz, R., Naeem, I.: The approximate Noether symmetries and approximate first integrals for the approximate Hamiltonian systems. Nonlinear Dyn. 96(3), 2225–2239 (2019)

    Google Scholar 

  24. Jin, S.X., Zhang, Y.: The approximate Noether symmetries and conservation laws for approximate Birkhoffian systems. Nonlinear Dyn. 111(4), 13235–13243 (2023)

    Google Scholar 

  25. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Google Scholar 

  26. Cariñena, J.F., Rañada, M.F., Santander, M.: Lagrangian formalism for nonlinear second- order Riccati systems: one dimensional integrability and two-dimensional superintegrability. J. Math. Phys. 46, 062703 (2005)

    ADS  MathSciNet  Google Scholar 

  27. Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: On the Lagrangian and Hamiltonian description of the damped linear harmonic oscillator. J. Math. Phys. 48, 032701 (2007)

    ADS  MathSciNet  Google Scholar 

  28. Udwadia, F.E., Cho, H.: First integral and solutions of duffing–van der pol type equations. J. Appl. Mech. 81(3), 034501 (2014)

    Google Scholar 

  29. Alekseev, A.I., Arbuzov, B.A.: Classical Yang–Mills field theory with nonstandard Lagrangian. Theor. Math. Phys. 59(1), 372–378 (1984)

    Google Scholar 

  30. Saha, A., Talukdar, B.: Inverse variational problem for nonstandard Lagrangians. Rep. Math. Phys. 73, 299–309 (2014)

    ADS  MathSciNet  Google Scholar 

  31. Taverna, G.S., Torres, D.F.M.: Generalized fractional operators for nonstandard Lagrangians. Math. Methods Appl. Sci. 38(9), 1808–1812 (2015)

    ADS  MathSciNet  Google Scholar 

  32. El-Nabulsi, A.R.: Non-standard Lagrangians in rotational dynamics and the modified Navier–Stokes equation. Nonlinear Dyn. 79(3), 2055–2068 (2015)

    MathSciNet  Google Scholar 

  33. Zhang, Y., Zhou, X.S.: Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangian. Nonlinear Dyn. 84(4), 1867–1876 (2016)

    MathSciNet  Google Scholar 

  34. Song, J., Zhang, Y.: Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales. Chin. Phys. B 26(8), 084501 (2017)

    ADS  Google Scholar 

  35. Ding, J.J., Zhang, Y.: Noether’s theorem for fractional Birkhoffian system of Herglotz type with time delay. Chaos Solition Fract. 138, 109913 (2020)

    MathSciNet  Google Scholar 

  36. Jin, S.X., Li, Y.M., Zhang, Y.: Noether symmetry and its inverse for dynamical systems with two kinds of nonstandard Lagrangians via quasi-coordinates. Indian J. Phys. 96, 2437–3448 (2021)

    ADS  Google Scholar 

  37. Zhang, Y., Wang, X.P.: Lie symmetry perturbation and adiabatic invariants for dynamical system with non-standard Lagrangians. Int. J. Non-Linear Mech. 105, 165–172 (2018)

    ADS  Google Scholar 

  38. Zhang, L.J., Zhang, Y.: Non-standard Birkhoffian dynamics and its Noether’s theorems. Commun. Nonlinear Sci. Numer. Simulat. 91, 105435 (2020)

    MathSciNet  Google Scholar 

  39. Zhang, Y., Jia, Y.D.: Generalization of Mei symmetry approach to fractional Birkhoffian mechanics. Chaos Soliton Fract. 166, 112971 (2023)

    MathSciNet  Google Scholar 

  40. Zhou, X.S., Zhang, Y.: Routh Method of Reduction for Dynamic Systems with Non-Standard Lagrangians. Chin. Quart. Mech. 37(1), 15–21 (2016). (in Chinese)

    Google Scholar 

  41. Song, J., Zhang, Y.: Routh method of reduction for dynamical systems with nonstandard Lagrangians on time scales. Ind. J. Phys. 94(4), 1–6 (2019)

    Google Scholar 

  42. El-Nabulsi, A.R.: Nonlinear dynamics with nonstandard Lagrangians. Qual. Theory Dyn. Syst. 12(2), 273–291 (2012)

    Google Scholar 

  43. Mei, F.X.: Analytical Mechanics. Beijing Institute of Technology Press, Beijing (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102241 and 11572212).

Author information

Authors and Affiliations

Authors

Contributions

S-XJ: Conceptualization, Methodology, Validation, Formal analysis, Visualization, Writing-review & editing, Supervision, Project administration, Funding acquisition. Y-ML: Conceptualization, Methodology, Writing-original draft. X-WC: Conceptualization, Methodology, Writing-original draft.

Corresponding author

Correspondence to S. X. Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S.X., Li, Y.M. & Chen, X.W. Noether theorem and its inverse for nonstandard generalized Chaplygin systems. Acta Mech 235, 1361–1373 (2024). https://doi.org/10.1007/s00707-023-03812-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03812-y

Navigation