Skip to main content
Log in

Damage (delamination and crack) effect on frequency and strain energy release rate (SERR) in adhesively bonded multi-material single lap joint—an experimental verification

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This research predicted multi-material adhesively bonded joints' structural responses (eigenvalue responses and strain energy release rates, SERR). The study includes the adhesive bonding between aluminium alloy (AA2014-T6) and glass fibre-reinforced polymer (GFRP). The numerical analyses are performed in a commercial finite element tool (ABAQUS) platform using the virtual crack closer technique (VCCT) for various scenarios (intact structures, delamination, cracks, and a combination of delamination with crack). A circular delamination with a 10 mm radius 'R' and a 10 mm length crack 'l' with a 0.2 mm radius of curvature 'Rc' is induced in the GFRP adherend middle layer using node-to-surface constraints. The model accuracy has been validated by comparing the current prediction with those of published data and experimental values. The study also explores the influence of boundary conditions with different fibre layup orientations, adhesive thickness ratios, and variations in fibre layup and crack orientations. The study indicates that cross-ply fibre orientation in the polymer adherend consistently outperforms, increasing overlap length. Additionally, the SERR values are higher at 90° and 270°, with the [0°]2S orientation excelling for a combined damage case (delamination with an inclined crack), producing higher SERR values than longitudinal and transverse cracks, regardless of fibre orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

There is no such third-party data utilized in this analysis. However, the generated data in the form of results are already within the text, and if anything, more is required can be provided with a reasonable request.

Abbreviations

ADC:

Analogue to digital converter

ANN:

Artificial neural network

c-DAQ:

Compact data acquisition

CFCF:

Clamped-free-clamped-free condition

CFFF:

Clamped-free-free-free condition

FEA:

Finite element analysis

FEM:

Finite element method

FMLs:

Fibre metal laminates

FFT:

Fast Fourier transform

FRP:

Fibre-reinforced polymer

GFRP:

Glass fibre-reinforced polymer

MMB:

Multi-material bond

MPC:

Multi-point constraint

NDT:

Non-destructive testing

SERR:

Strain energy release rate

SLJ:

Single lap joint

VCCT:

Virtual crack closure technique

\(\left[ M \right]\) and \(\left[ K \right]\) :

Mass and Stiffness matrices

\(x\left( t \right)\) :

Nodal displacement

\(\ddot{x}\left( t \right)\) :

Nodal acceleration

\(\left\{ {\overline{x}} \right\}\) :

Eigenvector

\(\lambda\) :

Eigenvalue

\(\omega\) :

Natural frequency

\(\left\{ P \right\}\) :

Static load

G I :

Strain energy release rate in Mode-I

G II :

Strain energy release rate in Mode-II

G III :

Strain energy release rate in Mode-III

L :

Length of adherend

W :

Breadth of adherend and adhesive

t :

Thickness of adherend

a :

Length of adhesive

h :

Thickness of adhesive

L o :

Overlapping length

Lc :

Clamping length

a/h :

Adhesive bond thickness ratio

R :

Radius of delamination

R c :

Crack radius of curvature

L :

Length of the crack

References

  1. Driver, D.: Adhesive bonding for aerospace applications. High Perform. Mater. Aerosp. (1995). https://doi.org/10.1007/978-94-011-0685-6_11

    Article  Google Scholar 

  2. Petrie, E.M., M, E.: Handbook of adhesives and sealants library of congress cataloging-in-publication data. McGraw Hill (2000)

  3. Yang, C., Oyadiji, S.O.: Detection of delamination in composite beams using frequency deviations due to concentrated mass loading. Compos. Struct. 146, 1–13 (2016). https://doi.org/10.1016/j.compstruct.2015.12.002

    Article  Google Scholar 

  4. He, S., Rao, M.D.: Longitudinal vibration and damping analysis of adhesively bonded double-strap joints. J. Vib. Acoust. 114, 330–337 (1992). https://doi.org/10.1115/1.2930266

    Article  Google Scholar 

  5. Yuceoglu, U., Toghi, F., Tekinalp, O.: Free bending vibrations of adhesively bonded orthotropic plates with a single lap joint. J. Vib. Acoust. 118, 122–134 (1996). https://doi.org/10.1115/1.2889626

    Article  Google Scholar 

  6. Li, H., Lv, H., Sun, H., Qin, Z., Xiong, J., Han, Q., Liu, J., Wang, X.: Nonlinear vibrations of fiber-reinforced composite cylindrical shells with bolt loosening boundary conditions. J. Sound Vib. 496, 115935 (2021). https://doi.org/10.1016/j.jsv.2021.115935

    Article  Google Scholar 

  7. Ko, T.-C., Lin, C.-C., Chu, R.-C.: Vibration of bonded laminated lap-joint plates using adhesive interface elements. J. Sound Vib. 184, 567–583 (1995). https://doi.org/10.1006/jsvi.1995.0334

    Article  ADS  Google Scholar 

  8. Kaya, A., Tekelioğlu, M.S., Findik, F.: Effects of various parameters on dynamic characteristics in adhesively bonded joints. Mater. Lett. 58, 3451–3456 (2004). https://doi.org/10.1016/j.matlet.2004.07.001

    Article  CAS  Google Scholar 

  9. Qin, Z., Cui, D., Yan, S., Chu, F.: Application of 2D finite element model for nonlinear dynamic analysis of clamp band joint. J. Vib. Control 23, 1480–1494 (2017). https://doi.org/10.1177/1077546315594065

    Article  Google Scholar 

  10. Qin, Z., Cui, D., Yan, S., Chu, F.: Hysteresis modeling of clamp band joint with macro-slip. Mech. Syst. Signal Process. 66–67, 89–110 (2016). https://doi.org/10.1016/j.ymssp.2015.04.038

    Article  ADS  Google Scholar 

  11. Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016). https://doi.org/10.1016/j.engfailanal.2015.11.002

    Article  Google Scholar 

  12. He, X.: Finite element analysis of torsional free vibration of adhesively bonded single-lap joints. Int. J. Adhes. Adhes. 48, 59–66 (2014). https://doi.org/10.1016/j.ijadhadh.2013.09.017

    Article  CAS  Google Scholar 

  13. Vaziri, A., Nayeb-Hashemi, H., Hamidzadeh, H.R.: Experimental and analytical investigations of the dynamic response of adhesively bonded single lap joints. J. Vib. Acoust. 126, 84–91 (2004). https://doi.org/10.1115/1.1596550

    Article  Google Scholar 

  14. Guo, Q., Wang, S.: Free vibration analysis and optimal design of adhesively bonded double-strap joints by using artificial neural networks. Lat. Am. J. Solids Struct. 17, 1–19 (2020). https://doi.org/10.1590/1679-78255878

    Article  Google Scholar 

  15. Wang, S., Li, Y., Xie, Z.: Free vibration analysis of adhesively bonded lap joints through layerwise finite element. Compos. Struct. 223, 110943 (2019). https://doi.org/10.1016/j.compstruct.2019.110943

    Article  Google Scholar 

  16. Damm, J., Ummenhofer, T., Albiez, M.: Influence of damping properties of adhesively bonded joints on the dynamic behaviour of steel structures: numerical investigations. J. Adhes. 98, 934–962 (2022). https://doi.org/10.1080/00218464.2020.1865161

    Article  CAS  Google Scholar 

  17. Ramalho, L.D.C., Sánchez-Arce, I.J., Gonçalves, D.C., Campilho, R.D.S.G., Belinha, J.: Free vibration parametric study of a single lap joint using the radial point interpolation method. Compos. Struct. 308, 116668 (2023). https://doi.org/10.1016/j.compstruct.2023.116668

    Article  Google Scholar 

  18. Kemiklioğlu, U., Baba, B.O.: Mechanical response of adhesively bonded composite joints subjected to vibration load and axial impact. Compos. Part B Eng. 176, 107317 (2019). https://doi.org/10.1016/j.compositesb.2019.107317

    Article  CAS  Google Scholar 

  19. Zhang, X., Ju, Y., Zhu, A., Zou, T.: Fatigue behavior of single-lap adhesive joints with similar and dissimilar adherends under cyclic loading: a combined experimental and simulation study. Mater. Today Commun. 37, 107215 (2023). https://doi.org/10.1016/j.mtcomm.2023.107215

    Article  CAS  Google Scholar 

  20. Morano, C., Tao, R., Wagih, A., Alfano, M., Lubineau, G.: Toughening effect in adhesive joints comprising a CFRP laminate and a corrugated lightweight aluminum alloy. Mater. Today Commun. 32, 104103 (2022). https://doi.org/10.1016/j.mtcomm.2022.104103

    Article  CAS  Google Scholar 

  21. Flor, F.R., de Medeiros, R., Tita, V.: Numerical and experimental damage identification in metal-composite bonded joint. J. Adhes. 91, 863–882 (2015). https://doi.org/10.1080/00218464.2014.977436

    Article  CAS  Google Scholar 

  22. Gao, X.-L., Su, Y.-Y.: An analytical study on peeling of an adhesively bonded joint based on a viscoelastic Bernoulli-Euler beam model. Acta Mech. 226, 3059–3067 (2015). https://doi.org/10.1007/s00707-015-1357-8

    Article  MathSciNet  Google Scholar 

  23. Trzepiecinski, T., Kubit, A., Kudelski, R., Kwolek, P., Obłój, A.: Strength properties of aluminium/glass-fiber-reinforced laminate with additional epoxy adhesive film interlayer. Int. J. Adhes. Adhes. 85, 29–36 (2018). https://doi.org/10.1016/j.ijadhadh.2018.05.016

    Article  CAS  Google Scholar 

  24. Bellini, C., Di Cocco, V., Iacoviello, F., Sorrentino, L.: Performance evaluation of CFRP/Al fibre metal laminates with different structural characteristics. Compos. Struct. 225, 111117 (2019). https://doi.org/10.1016/j.compstruct.2019.111117

    Article  Google Scholar 

  25. Dileep, P.K., Hartmann, S., Hua, W., Palkowski, H., Fischer, T., Ziegmann, G.: Parameter estimation and its influence on layered metal–composite–metal plates simulation. Acta Mech. 233, 2891–2929 (2022). https://doi.org/10.1007/s00707-022-03245-z

    Article  Google Scholar 

  26. Prasad, E.V., Sahu, S.K.: Vibration analysis of woven fiber metal laminated plates—experimental and numerical studies. Int. J. Struct. Stab. Dyn. 18, 1850144 (2018). https://doi.org/10.1142/S0219455418501444

    Article  MathSciNet  Google Scholar 

  27. Murat, Y., T, C., A, M.: Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane. Struct. Eng. Mech. 72, 775–783 (2019). https://doi.org/10.12989/sem.2019.72.6.775

    Article  Google Scholar 

  28. Yaylaci, M., Avcar, M.: Finite element modeling of contact between an elastic layer and two elastic quarter planes. Comput. Concr. 26, 107–114 (2020). https://doi.org/10.12989/cac.2020.26.2.107

    Article  Google Scholar 

  29. Ecren, U.Y., Murat, Y., Mehmet, E.O., Merve, T., O, S.: Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks. Adv. nano Res. 15, 165–174 (2023). https://doi.org/10.12989/anr.2023.15.2.165

    Article  Google Scholar 

  30. Yaylac, M., Özdemir, M.E.: Research of the impact of material and flow properties on fluid-structure interaction in cage systems. Wind Struct. 36, 31–40 (2023). https://doi.org/10.12989/was.2023.36.1.031

    Article  Google Scholar 

  31. Andreon, B., Guenther, B.L., Cavalcanti, W.L., Colombi Ciacchi, L., Plagemann, P.: On the use of scanning Kelvin probe for assessing in situ the delamination of adhesively bonded joints. Corros. Sci. 157, 11–19 (2019). https://doi.org/10.1016/j.corsci.2019.03.001

    Article  CAS  Google Scholar 

  32. Seong, M.-S., Kim, T.-H., Nguyen, K.-H., Kweon, J.-H., Choi, J.-H.: A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum. Compos. Struct. 86, 135–145 (2008). https://doi.org/10.1016/j.compstruct.2008.03.026

    Article  Google Scholar 

  33. Jiang, X., Kolstein, M.H., Bijlaard, F.S.K.: Study on mechanical behaviors of FRP-to-steel adhesively-bonded joint under tensile loading. Compos. Struct. 98, 192–201 (2013). https://doi.org/10.1016/j.compstruct.2012.10.045

    Article  Google Scholar 

  34. Senthil, K., Arockiarajan, A., Palaninathan, R., Santhosh, B., Usha, K.M.: Experimental and numerical studies on adhesively bonded CFRP laminates with closed debonds. Compos. Struct. 95, 598–606 (2013). https://doi.org/10.1016/j.compstruct.2012.08.007

    Article  Google Scholar 

  35. Ducept, F., Davies, P., Gamby, D.: Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint. Int. J. Adhes. Adhes. 20, 233–244 (2000). https://doi.org/10.1016/S0143-7496(99)00048-2

    Article  CAS  Google Scholar 

  36. Koguchi, H., Yokoyama, K.: Stress analysis in three-dimensional joints with a crack at the vertex of the interface. Acta Mech. 228, 2759–2773 (2017). https://doi.org/10.1007/s00707-015-1525-x

    Article  MathSciNet  Google Scholar 

  37. Wang, J., Zhang, C.: Energy release rate and phase angle of delamination in sandwich beams and symmetric adhesively bonded joints. Int. J. Solids Struct. 46, 4409–4418 (2009). https://doi.org/10.1016/j.ijsolstr.2009.09.003

    Article  Google Scholar 

  38. Tong, L.: Failure of adhesive-bonded composite single lap joints with embedded cracks. AIAA J. 36, 448–456 (1998). https://doi.org/10.2514/2.385

    Article  ADS  Google Scholar 

  39. Panigrahi, S.K., Pradhan, B.: Through-the-width delamination damage propagation characteristics in single-lap laminated FRP composite joints. Int. J. Adhes. Adhes. 29, 114–124 (2009). https://doi.org/10.1016/j.ijadhadh.2008.03.001

    Article  CAS  Google Scholar 

  40. Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ozturk, Ş, Sesli, H.: Vibration and buckling analyses of FGM beam with edge crack: finite element and multilayer perceptron methods. Steel Compos. Struct. 46, 565–575 (2023). https://doi.org/10.12989/scs.2023.46.4.565

    Article  Google Scholar 

  41. YayIaci, M., YayIaci, E.U., Ozdemir, M.E., Ay, S., Ozturk, Ş: Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack. Steel Compos. Struct. 45, 501–511 (2022). https://doi.org/10.12989/scs.2022.45.4.501

    Article  Google Scholar 

  42. Parida, S.K., Pradhan, A.K.: Influence of curvature geometry of laminated FRP composite panels on delamination damage in adhesively bonded lap shear joints. Int. J. Adhes. Adhes. 54, 57–66 (2014). https://doi.org/10.1016/j.ijadhadh.2014.05.003

    Article  CAS  Google Scholar 

  43. Szekrényes, A.: Analysis of classical and first-order shear deformable cracked orthotropic plates. J. Compos. Mater. 48, 1441–1457 (2014). https://doi.org/10.1177/0021998313487756

    Article  ADS  Google Scholar 

  44. Reddy, J.N.: An Introduction to the finite element method. Numer. Anal. Algorithms Program. (2019). https://doi.org/10.1201/9781315369174-11

    Article  Google Scholar 

  45. Gunes, R., Kemal Apalak, M., Yildirim, M., Ozkes, I.: Free vibration analysis of adhesively bonded single lap joints with wide and narrow functionally graded plates. Compos. Struct. 92, 1–17 (2010). https://doi.org/10.1016/j.compstruct.2009.06.003

    Article  Google Scholar 

  46. Elisa, P.: Virtual crack closure technique and finite element method for predicting the delamination growth initiation in composite structures. In: Advances in composite materials—analysis of natural and man-made materials. InTech (2011)

  47. Li, D.H.: Delamination and transverse crack growth prediction for laminated composite plates and shells. Comput. Struct. 177, 39–55 (2016). https://doi.org/10.1016/j.compstruc.2016.07.011

    Article  ADS  Google Scholar 

  48. Kumar, V., Dewangan, H.C., Sharma, N., Panda, S.K.: Combined damage influence prediction of curved composite structural responses using VCCT technique and experimental verification. Int. J. Appl. Mech. 13, 2150086 (2021)

    Article  Google Scholar 

  49. Roger, G., John, G., Horst, D.: A lanczos solving. SIAM J. Matrix Anal. Appl. 15, 228–272 (1994)

    MathSciNet  Google Scholar 

  50. Dewangan, H.C., Panda, S.K., Sharma, N., Mahmoud, S.R., Harursampath, D., Mahesh, V.: Thermo-mechanical large deformation characteristics of cutout borne multilayered curved structure: numerical prediction and experimental validation. Int. J. Non. Linear. Mech. 150, 104345 (2023). https://doi.org/10.1016/j.ijnonlinmec.2022.104345

    Article  ADS  Google Scholar 

  51. He, X.: Numerical and experimental investigations of the dynamic response of bonded beams with a single-lap joint. Int. J. Adhes. Adhes. 37, 79–85 (2012). https://doi.org/10.1016/j.ijadhadh.2012.01.008

    Article  CAS  Google Scholar 

  52. Kumar, V., Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical frequency and SERR response of damaged (crack/delamination) multilayered composite under themomechanical loading: An experimental verification. Compos. Struct. (2022). https://doi.org/10.1016/j.compstruct.2022.115709

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkasali, N.K., Biswas, S. & Panda, S.K. Damage (delamination and crack) effect on frequency and strain energy release rate (SERR) in adhesively bonded multi-material single lap joint—an experimental verification. Acta Mech 235, 1271–1290 (2024). https://doi.org/10.1007/s00707-023-03807-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03807-9

Navigation