Skip to main content
Log in

Phase-field fracture analysis of heterogeneous materials based on homogenization method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A homogenization-based phase-field method is introduced to systematically investigate fracture behavior of heterogeneous materials in this research. The construction of a homogeneous medium equivalent to a heterogeneous one is fulfilled by employing different homogenization methods. In this way, the fracture response of heterogeneous materials can be obtained by fracture analysis of homogeneous materials. On the one hand, the proposed method provided a new technique to study the influence of mesoscopic information of heterogeneous materials on its macroscopic fracture behavior. On the other hand, the fine meshing required for directly solving the fracture problem of heterogeneous materials can be avoided. The proposed technique can reproduce both the mechanical force response and crack path with good accuracy. In the numerical examples, the effect of mesoscopic information of periodically heterogeneous material and porous medium on their fracture behavior is investigated in detail. Results show that the proposed method is efficient and reliable and has the potential in fracture analysis of heterogeneous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

Data and results will be made available upon reasonable requests.

References

  1. LeBlanc, J., Shukla, A., Rajapakse, Y.D.S.: Dynamic failure of composite materials. J. Dyn. Behav. Mater. 4(3), 257–257 (2018). https://doi.org/10.1007/s40870-018-0171-5

    Article  Google Scholar 

  2. Zhang, P., Hu, X., Bui, T.Q., Yao, W.: Phase field modeling of fracture in fiber reinforced composite laminate. Int. J. Mech. Sci. 161–162, 105008 (2019). https://doi.org/10.1016/j.ijmecsci.2019.07.007

    Article  Google Scholar 

  3. Lancioni, G., Alessi, R.: Modeling micro-cracking and failure in short fiber-reinforced composites. J. Mech. Phys. Solids 137, 103854 (2020). https://doi.org/10.1016/j.jmps.2019.103854

    Article  MathSciNet  Google Scholar 

  4. Li, J., Zong, B.Y., Wang, Y.M., Zhuang, W.B.: Experiment and modeling of mechanical properties on iron matrix composites reinforced by different types of ceramic particles. Mater. Sci. Eng. A 527(29–30), 7545–7551 (2010). https://doi.org/10.1016/j.msea.2010.08.029

    Article  CAS  Google Scholar 

  5. Bourdin, B., Francfort, G.A., Marigo, J.J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000). https://doi.org/10.1016/S0022-5096(99)00028-9

    Article  ADS  MathSciNet  Google Scholar 

  6. Francfort, G.A., Marigo, J.J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998). https://doi.org/10.1016/S0022-5096(98)00034-9

    Article  ADS  MathSciNet  Google Scholar 

  7. Wu, J.Y., Nguyen, V.P., Nguyen, C.T., Sutula, D., Sinaie, S., Bordas, S.: Phase-field modelling of fracture. Adv. Appl. Mech. 53, 1–183 (2020). https://doi.org/10.1016/bs.aams.2019.08.001

    Article  Google Scholar 

  8. Yuan, J.H., Mao, Y.Q., Chen, C.P.: Multiple-phase-field modeling for fracture of composite materials. Mech. Adv. Mater. Struc. 29(28), 7476–7490 (2021). https://doi.org/10.1080/15376494.2021.2000081

    Article  Google Scholar 

  9. Schöller, L., Schneider, D., Herrmann, C., Prahs, A., Nestler, B.: Phase-field modeling of crack propagation in heterogeneous materials with multiple crack order parameters. Comput. Methods Appl. Mech. Eng. (2022). https://doi.org/10.1016/j.cma.2022.114965

    Article  MathSciNet  Google Scholar 

  10. Nguyen, T.T., Yvonnet, J., Bornert, M., Chateau, C.: Initiation and propagation of complex 3D networks of cracks in heterogeneous quasi-brittle materials: direct comparison between in situ testing-microCT experiments and phase field simulations. J. Mech. Phys. Solids 95, 320–350 (2016). https://doi.org/10.1016/j.jmps.2016.06.004

    Article  ADS  CAS  Google Scholar 

  11. Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., Bornert, M., Chateau, C.: A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng. Fract. Mech. 139, 18–39 (2015). https://doi.org/10.1016/j.engfracmech.2015.03.045

    Article  Google Scholar 

  12. Nguyen, T.T., Yvonnet, J., Zhu, Q.Z., Bornert, M., Chateau, C.: A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography. Comput. Methods Appl. Mech. Eng. 312, 567–595 (2016). https://doi.org/10.1016/j.cma.2015.10.007

    Article  ADS  MathSciNet  Google Scholar 

  13. Yang, Z.J., Li, B.B., Wu, J.Y.: X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 208, 151–170 (2019). https://doi.org/10.1016/j.engfracmech.2019.01.005

    Article  Google Scholar 

  14. Xia, L., Yvonnet, J., Ghabezloo, S.: Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media. Eng. Fract. Mech. 186, 158–180 (2017). https://doi.org/10.1016/j.engfracmech.2017.10.005

    Article  Google Scholar 

  15. Nguyen, T.T., Waldmann, D., Bui, T.Q.: Role of interfacial transition zone in phase field modeling of fracture in layered heterogeneous structures. J. Comput. Phys. 386, 585–610 (2019). https://doi.org/10.1016/j.jcp.2019.02.022

    Article  ADS  MathSciNet  Google Scholar 

  16. Nguyen, T.T., Yvonnet, J., Waldmann, D., He, Q.C.: Phase field modeling of interfacial damage in heterogeneous media with stiff and soft interphases. Eng. Fract. Mech. (2019). https://doi.org/10.1016/j.engfracmech.2019.106574

    Article  Google Scholar 

  17. Patil, R.U., Mishra, B.K., Singh, I.V.: A multiscale framework based on phase field method and XFEM to simulate fracture in highly heterogeneous materials. Theor. Appl. Fract. Mech. 100, 390–415 (2019). https://doi.org/10.1016/j.tafmec.2019.02.002

    Article  Google Scholar 

  18. Nguyen, N., Yvonnet, J., Réthoré, J., Tran, A.B.: Identification of fracture models based on phase field for crack propagation in heterogeneous lattices in a context of non-separated scales. Comput. Mech. 63, 1047–1068 (2018). https://doi.org/10.1007/s00466-018-1636-z

    Article  MathSciNet  Google Scholar 

  19. He, B., Schuler, L., Newell, P.: A numerical-homogenization based phase-field fracture modeling of linear elastic heterogeneous porous media. Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109519

    Article  Google Scholar 

  20. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010). https://doi.org/10.1002/nme.2861

    Article  MathSciNet  Google Scholar 

  21. Ambati, M., Gerasimov, T., De Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55, 383–405 (2014). https://doi.org/10.1007/s00466-014-1109-y

    Article  MathSciNet  Google Scholar 

  22. Hassani, B., Hinton, E.: A review of homogenization and topology opimization II-analytical and numerical solution of homogenization equations. Comput. Struct. 69, 719–738 (1998). https://doi.org/10.1016/S0045-7949(98)00132-1

    Article  Google Scholar 

  23. Hassani, B., Hinton, E.: A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Comput. Struct. 69, 707–717 (1998). https://doi.org/10.1016/S0045-7949(98)00131-X

    Article  Google Scholar 

  24. Fish, J.: Practical multiscaling. Wiley, West Sussex (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge with great gratitude for the supports of the National Science Foundation of China (Grant No: 51778551) and the Science and Technology Plan Project of Wenzhou (Grant. No. S20220004).

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 51778551), Science and Technology Plan Project of Wenzhou, China (Grant No. S20220004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihai Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., He, S., Chen, C. et al. Phase-field fracture analysis of heterogeneous materials based on homogenization method. Acta Mech 235, 1083–1107 (2024). https://doi.org/10.1007/s00707-023-03798-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03798-7

Navigation