Skip to main content
Log in

A direct method for acoustic waves in hard particle–fluid suspensions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A direct method is developed to study acoustic waves in a viscous fluid filled with randomly distributed hard spherical particles. The present method is based on the assumption that the relative shift of the velocity field of immersed hard particles from the host fluid is responsible for dynamic behavior of the suspension, and its role can be formulated by substituting the inertia term of governing equations by the acceleration field of the mass centre of the representative unit cell. Compared to existing models based on rather complicated mathematical formulation and numerical calculations, the present model enjoys conceptual and mathematical simplicity and the generality. Explicit formulas are derived for the attenuation coefficient and effective phase velocity of plane compression waves and shear waves. The efficiency and accuracy of the model are demonstrated by quantitatively good agreement between the predicted results and known data for a wide range of material and geometrical parameters. The proposed model could offer a relatively simple general method and easy-to-use explicit formulas to study acoustic wave propagation in hard particle-viscous fluid suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Julian McClements, D., et al.: Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37, 1–46 (1997)

    Article  Google Scholar 

  2. Ritz, J.B., Caltagirone, J.P.: A numerical continuous model for the hydrodynamics of fluid particle systems. Int. J. Numer. Methods Fluids 30, 1067–1090 (1999)

    Article  ADS  Google Scholar 

  3. Brady, J.F.: Computer simulation of viscous suspensions. Chem. Eng. Sci. 56, 2921–2926 (2001)

    Article  CAS  Google Scholar 

  4. Challis, R.E., et al.: Ultrasound techniques for characterizing colloidal dispersions. Rep. Prog. Phys. 68, 1541–1637 (2005)

    Article  ADS  CAS  Google Scholar 

  5. Straube, V., et al.: Averaged dynamics of two-phase media in a vibration field. Phys. Fluids 18, 053303 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Maxey, M.: Simulation methods for particulate flows and concentrated suspensions. Annu. Rev. Fluid Mech. 49, 171–193 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. Holmes, A.K., et al.: A wide bandwidth study of ultrasound velocity and attenuation in suspension. J. Colloid Interface Sci. 156, 261–268 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Sprik, R., Wegdam, G.H.: Acoustic band gaps in composites of solids and viscous liquids. Solid Satte Commun. 106(2), 77–81 (1998)

    Article  ADS  CAS  Google Scholar 

  9. Cowan, M.L., et al.: Group velocity of acoustic waves in strongly scattering media. Phy. Rev. E 58(5), 6626–6635 (1998)

    Article  ADS  CAS  Google Scholar 

  10. Mobley, J., et al.: Measurements and predictions of phase velocity and attenuation coefficient in suspension of elastic microspheres. J. Acoust. Soc. Am. 106, 652–659 (1999)

    Article  ADS  Google Scholar 

  11. Page, J.H., et al.: Diffusing acoustic wave spectroscopy of fluidized suspension. Phys. B 279, 130–133 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Spelt, P.M., et al.: Attenuation of sound in concentrated suspension: theory and experiments. J. Fluid Mech. 430, 51–86 (2001)

    Article  ADS  CAS  Google Scholar 

  13. Hipp AK et al. (2002) Acoustic characterization of concentrated suspensions and emulsions. Langmuir 18, part 1. Model analysis, 391–404; part 2. Experimental validation, 405–412

  14. Aggelis, D.G., et al.: An iterative effective medium approximation (IEMA) for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions. J. Acoust. Soc. Am. 116, 3443–3452 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Aristegui, C., Angel, Y.C.: Effective mass density and stiffness derived from P-wave multiple scattering. Wave Mot. 44, 153–164 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Caleap, M., et al.: Effective dynamic constitutive parameters of acoustic metamaterials with random microstructures. New J. Phys. 14, 033014 (2012)

    Article  ADS  Google Scholar 

  17. Challis, R.E., Pinfield, V.J.: Ultrasonic wave propagation in concentrated slurries—the modeling problem. Ultrasonics 54, 1737–1744 (2014)

    Article  CAS  PubMed  Google Scholar 

  18. Fedotovskii, V.S., et al.: Complex density of a suspension in an oscillatory wave process. Acoust. Phys. 60, 175–180 (2014)

    Article  ADS  CAS  Google Scholar 

  19. Pinfield, V.J., et al.: Ultrasound propagation in concentrated suspension. Phys. Procedia 70, 213–216 (2015)

    Article  ADS  Google Scholar 

  20. Valier-Brasier, T., et al.: Sound propagation in dilute suspension of spheres: analytical comparison between coupled phase model and multiple scattering theory. J. Acoust. Soc. Am. 138, 2598–2612 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Forrester, D.M., et al.: Characterization of colloidal dispersions using ultrasound spectroscopy and multiple-scattering theory inclusive of shear-wave effects. Chem. Eng. Res. Des. 114, 69–78 (2016)

    Article  CAS  Google Scholar 

  22. Alam, M.M., et al.: The coherent shear wave in suspension. J. Phys: Confer. Ser. 1017, 012003 (2018)

    Google Scholar 

  23. Alam, M.M., et al.: Effective dynamic properties of random complex media with spherical particles. J. Acoust. Soc. Am. 145, 3727–3740 (2019)

    Article  ADS  PubMed  Google Scholar 

  24. Alam, M.M.: Ultrasonic propagation in concentrated colloidal dispersion: improvements in a hydrodynamic model. J. Dispers. Sci. Tech. 43, 1177–1186 (2022)

    Article  CAS  Google Scholar 

  25. Guz, A.N.: Compressible, viscous fluid dynamics (review). Part I. Int. Appl. Mech. 36, 14–39 (2000)

    Article  ADS  Google Scholar 

  26. Friend, J., Yeo, L.Y.: Microscale acoustofluidics : microfluidics driven via acoustics and ultrasonics. Rev. Mod. Phys. 83, 647–704 (2011)

    Article  ADS  Google Scholar 

  27. Chen, Y., et al.: Isentropic wave propagation in a viscous fluid. J. Acoust. Soc. Am. 136(4), 1692–1701 (2014)

    Article  ADS  PubMed  Google Scholar 

  28. M. Manninen et al. (1996) On the mixture model for multiphase flow. VTT publication 288. ISSN 1235–0621, Technical Research Centre of Finland.

  29. Fonty, T., et al.: Mixture model for two-phase flows with high density ratios. Int. J. Multiphase Flow 111, 158–174 (2019)

    Article  MathSciNet  CAS  Google Scholar 

  30. Hussey, R.G., Vujacic, P.: Damping corrections for oscillating cylinder and sphere. Phys. Fluids 10, 96–97 (1967)

    Article  ADS  Google Scholar 

  31. Karanfilian, S.K., Kotas, T.J.: Drag on a sphere in unsteady motion in a liquid at rest. J. Fluid Mech. 87, 85–96 (1978)

    Article  ADS  Google Scholar 

  32. Gupta, V.K., Shanker, G., Sharma, N.K.: Experiment on fluid drag and viscosity with an oscillating sphere. Am. J. Phys. 54, p619 (1986)

    Article  ADS  Google Scholar 

  33. Alexander, P., Indelicato, E.: A semi-empirical approach to a viscously damped oscillating sphere. Eur. J. Phys. 25, 1–10 (2005)

    Article  Google Scholar 

  34. Dolfo, G., Vigué, J., Lhuillier, D.: Experimental test of unsteady Stokes’ drag force on a sphere. Exp. Fluids 61, 97 (2020)

    Article  Google Scholar 

  35. Ibarias, M., et al.: Phononic crystal as a homogeneous viscous metamaterial. Phys. Rev. Res. 2, 022053(R) (2020)

    Article  Google Scholar 

  36. Roscoe, R.: The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 3, p267 (1952)

    Article  ADS  Google Scholar 

  37. Lejeune, A.M., Richet, P.: Rheology of crystal-bearing silicate melts: an experimental study at high viscosity. J. Geophys. Res. 100, p4215 (1995)

    Article  ADS  Google Scholar 

  38. Brouwers, H.J.H.: Viscosity of a concentrated suspension of rigid monosized particles. Phy. Rev. E 81, 051402 (2010)

    Article  ADS  CAS  Google Scholar 

  39. Liu, Z., et al.: Viscosity of heterogeneous silicate melts: a review. Metall. Mater. Trans. 49B, 2469 (2018)

    Article  ADS  Google Scholar 

  40. Solyaev, Y.O., et al.: Generalized Einstein’s and Brinkman’s solutions for the effective viscosity of nanofluids. J. Appl. Phys. 128, 035102 (2020)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NSERC (Natural Science & Engineering Research Council) of Canada (NSERC-RGPIN204992).

Funding

The funding was provided by the NSERC (Natural Science & Engineering Research Council) of Canada (NSERC-RGPIN204992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Q. Ru.

Ethics declarations

Conflict of interest

The author has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ru, C.Q. A direct method for acoustic waves in hard particle–fluid suspensions. Acta Mech 235, 1051–1065 (2024). https://doi.org/10.1007/s00707-023-03795-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03795-w

Navigation