Skip to main content
Log in

Stabilization of hypersonic boundary layer by combining micro-blowing and a porous coating

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The extensive involvement of blowing in ablation and transpiration cooling directly influences the hypersonic boundary layer (HBL) transition. This work investigates the coupled effect of stabilization through micro-blowing and the corresponding porous blowing medium on a Mach 6 HBL flow. Linear stability theory (LST) and the eN method are used to interpret the characteristics of stability, and direct numerical simulations are used to resolve the detailed flow field among the porous microstructures to verify the predictions of LST. The sole effect of micro-blowing is first investigated by emphasizing the locations of the blowing strip. The results show that micro-blowing alone can significantly excite the first mode but stabilize the second mode. In general, the HBL becomes unstable if the blowing strip is installed upstream of the synchronization points of the dominant disturbances, and otherwise becomes stable. In the context of the blowing medium, a porous coating can suppress high-frequency disturbances and help stabilize the HBL if the blowing strip is placed upstream of the synchronization points of the dominant disturbances. On the contrary, the coating can prematurely excite lower-frequency disturbances and degrade the overall stabilization when the strip is located in the dominant region of the second mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fedorov, A.V.: Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 79–95 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lee, C., Chen, S.: Recent progress in the study of transition in the hypersonic boundary layer. Natl. Sci. Rev. 6, 155–170 (2019)

    Article  CAS  PubMed  Google Scholar 

  3. Fedorov, A.V.: Prediction and control of laminar-turbulent transition in high-speed boundary-layer flows. Procedia IUTAM 14, 3–14 (2015)

    Article  Google Scholar 

  4. Reshotko, E.: Boundary layer instability, transition and control. In: AIAA Paper, pp. 94–0001 (1994)

  5. Malmuth, N., Fedorov, A.V., Shalaev, V., Cole, J., Khokhlov, A., Hites, M., Williams, D.: Problems in high speed flow prediction relevant to control. In: AIAA Paper, pp. 1998–2695 (1998)

  6. Schneider, S.: Hypersonic boundary-layer transition with ablation and blowing. In: AIAA Paper, pp. 2008–3730 (2008)

  7. Kaattari, G.: Effects of mass addition on blunt-body boundary-layer transition and heat transfer. NASA TP-1139 (1978).

  8. Akin, C.M., Marvin, J.: Combined effects of mass addition and nose bluntness on boundary-layer transition. AIAA J. 8(5), 857 (1970)

    Article  ADS  Google Scholar 

  9. Malik, M.R.: Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27(11), 1487–1493 (1989)

    Article  ADS  Google Scholar 

  10. Geissler, W.: Compressible dynamic stall calculations incorporating transition modeling for variable geometry airfoils. In: AIAA Paper, pp. 1998–705 (1998)

  11. Reda, D., Wilder, W., Bogdonoff, D., Prabhu, D.: Transition experiments on blunt bodies with distributed roughness in hypersonic free flight. J. Spacecr. Rocket. 45(2), 210 (2008)

    Article  ADS  Google Scholar 

  12. Schneider, S.: Effects of roughness on hypersonic boundary-layer transition. J. Spacecr. Rocket. 45(2), 193 (2008)

    Article  ADS  Google Scholar 

  13. Li, F., Choudhari, M.M., Chang, C.L., White, J.: Effects of injection on the instability of boundary layers over hypersonic configurations. Phys. Fluids 25(10), 104107 (2013)

    Article  ADS  Google Scholar 

  14. Miró, F.M., Fabio, P.: Effect of uneven wall blowing on hypersonic boundary-layer stability and transition. Phys. Fluids 30, 084106 (2018)

    Article  ADS  Google Scholar 

  15. Mortensen, C., Zhong, X.: Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA J. 54(3), 980–998 (2016)

    Article  ADS  Google Scholar 

  16. Holden, M.S., Mundy, E., Maclean, M.: Heat transfer measurements to examine surface roughness and blowing effects in hypersonic flows. In: AIAA Paper, p. 2760 (2011).

  17. Johnson, H.B., Gronvall, J.E., Chandler, G. V.: Reacting hypersonic boundary layer stability with blowing and suction. AIAA Paper, p. 938 (2009)

  18. Ghaffari, S., Marxen, O., Iaccarino, G. and Shaqfeh, E. S. G.: Numerical simulations of hypersonic boundary-layer instability with wall blowing. AIAA Paper. 2010–706 (2010).

  19. Marvin, J.G., Akin, C.M.: Combined effects of mass addition and nose bluntness on boundary-layer transition. AIAA J. 8(5), 857–863 (1970)

    Article  ADS  Google Scholar 

  20. Fedorov, A.V., Malmuth, N.: Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39, 605–610 (2001)

    Article  ADS  Google Scholar 

  21. Brès, G.A., Colonius, T., Fedorov, A.V.: Acoustic properties of porous coatings for hypersonic boundary-layer control. AIAA J. 48(2), 267–274 (2010)

    Article  ADS  Google Scholar 

  22. Wang, X., Zhong, X.: The stabilization of a hypersonic boundary layer using local sections of porous coating. Phys. Fluids 24, 034105 (2012)

    Article  ADS  Google Scholar 

  23. Lukashevich, S.V., Morozov, S.O., Shiplyuk, A.N.: Experimental study of the effect of a passive porous coating on disturbances in a hypersonic boundary layer 2: effect of the porous coating location. J. Appl. Mech. Tech. Phys. 57(5), 873–878 (2016)

    Article  ADS  Google Scholar 

  24. Zhao, R., Wen, C., Zhou, Y., Tu, G., Lei, J.: Review of acoustic metasurfaces for hypersonic boundary layer stabilization. Prog. Aerosp. Sci. 130, 100808 (2022)

    Article  Google Scholar 

  25. Zhu, W., Shi, M., Zhu, Y., Lee, C.: Experimental study of hypersonic boundary layer transition on a permeable wall of a flared cone. Phys. Fluids 32, 011701 (2020)

    Article  ADS  CAS  Google Scholar 

  26. Zhu, W., Chen, X., Zhu, Y., Lee, C.: Nonlinear interactions in the hypersonic boundary layer on the permeable wall. Phys. Fluids 32, 104110 (2020)

    Article  ADS  CAS  Google Scholar 

  27. Fedorov, A.V., Soudakov, V. G.: Theoretical-numerical analysis of boundary-layer stability with combined injection and acoustic absorptive coating. In: Final Report on EOARD GRANT No. FA8655-12-D-0003, Moscow Institute of Physics and Technology, January 2014 (2014)

  28. Miró, F.M., Dehairs, P., Pinna, F., et al.: Effect of wall blowing on hypersonic boundary-layer transition. AIAA J. 57(4), 1567–1578 (2019)

    Article  ADS  Google Scholar 

  29. Zhao, R., Liu, X., Wen, C., Wang, X.: Broadband design of acoustic metasurfaces for the stabilization of a Mach 4 boundary layer flow. Adv. Aerodyn. 4(1), 15 (2022)

    Article  Google Scholar 

  30. Smith, F.: On the first-mode instability in subsonic, supersonic or hypersonic boundary layers. J. Fluid Mech. 198, 127–153 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  31. Zhao, L., Dong, M., Yang, Y.: Harmonic linearized Navier-Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Phys. Fluids 31(3), 034108 (2019)

    Article  ADS  Google Scholar 

  32. Zhao, L., Dong, M.: Effect of suction on laminar-flow control in subsonic boundary layers with forward-/backward-facing steps. Phys. Fluids 32(5), 054108 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Dong, M., Zhao, L.: An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. J. Fluid Mech. 913, 22 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zhao, R., Fan, Y.X., Liu, X., Wen, C.Y.: Stabilization effect of acoustic metasurfaces on broadband disturbances in a Mach 6 boundary-layer flow. Phys. Fluids 34, 121706 (2022)

    Article  ADS  CAS  Google Scholar 

  35. Tian, X., Zhao, R., Long, T., Wen, C.Y.: Reverse design of ultrasonic absorptive coating for the stabilization of mack modes. AIAA J. 57(6), 2264–2269 (2019)

    Article  ADS  CAS  Google Scholar 

  36. Malik, M.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86(2), 376–413 (1990)

    Article  ADS  Google Scholar 

  37. Zhao, R., Liu, T., Wen, C., Zhu, J., Cheng, L.: Theoretical modeling and optimization of porous coating for hypersonic laminar flow control. AIAA J. 56, 2942–2946 (2018)

    Article  ADS  Google Scholar 

  38. Soudakov, V., Fedorov, A., Egorov, I.: Stability of high-speed boundary layer on a sharp cone with localized wall heating or cooling. Prog. Flight Phys. 7, 569–584 (2015)

    Article  Google Scholar 

  39. Zhao, R., Wen, C.Y., Long, T.H., Tian, X.D., Zhou, L., Wu, Y.: Spatial direct numerical simulation of the hypersonic boundary-layer stabilization using porous coatings. AIAA J. 57, 5061–5065 (2019)

    Article  ADS  Google Scholar 

  40. Zhao, R., Liu, T., Wen, C.Y., Zhu, J., Cheng, L.: Impedance-near-zero acoustic metasurface for hypersonic boundary-layer flow stabilization. Phys. Rev. Appl. 11, 044015 (2019)

    Article  ADS  CAS  Google Scholar 

  41. Zhao, R., Dong, Y., Zhang, X., Wen, C., Long, T., Yuan, W.: Control of reflected waves with acoustic metasurfaces for hypersonic boundary-layer stabilization. AIAA J. 59, 1533 (2021)

    Article  Google Scholar 

  42. Knisely, C.P., Zhong, X.: Significant supersonic modes and the wall temperature effect in hypersonic boundary layers. AIAA J. 57, 1552–1566 (2018)

    Article  ADS  Google Scholar 

  43. Fedorov, A., Kozlov, V.F., Shiplyuk, A.N.: Stability of hypersonic boundary layer on porous wall with regular microstructure. AIAA J. 44(8), 1866–1871 (2006)

    Article  ADS  Google Scholar 

  44. Stephen, S.O., Michael, V.: Effects of porous walls on hypersonic boundary layer over a sharp cone. AIAA J. 51(5), 1234–1244 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Li Xinliang for his generosity in providing the codes for the DNS used in this study.

Funding

This study was funded by the National Natural Science Foundation of China (Grant Nos. 12272049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Zhao, R., Wen, C. et al. Stabilization of hypersonic boundary layer by combining micro-blowing and a porous coating. Acta Mech 235, 1109–1123 (2024). https://doi.org/10.1007/s00707-023-03788-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03788-9

Navigation