Skip to main content
Log in

In-plane vibration characteristics of metamaterial plates with locally resonant microstructures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, in-plane vibration characteristics of square metamaterial plates, which are made of three-dimensional periodic arrangement of the coated spherical particles embedded in a matrix, are investigated theoretically. First, the effective material properties of the plates, including elastic constants and mass density, are obtained by using a simple homogenization method. Then, the governing equations of in-plane vibration are derived and solved analytically for simply supported boundary conditions. In addition, to verify the proposed formulations, the resonance frequencies and corresponding mode shapes of the plates are calculated via commercial finite element method software. Then, a parametric study is performed to illustrate the effects of the geometrical and material properties of the unit cells on the frequencies of metamaterial plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhu, H., Semperlotti, F.: Metamaterial based embedded acoustic filters for structural applications. AIP Adv. 3(9), 092121 (2013)

    ADS  Google Scholar 

  2. Bigoni, D., Guenneau, S., Movchan, A.B., Brun, M.: Elastic metamaterials with inertial locally resonant structures: application to lensing and localization. Phys. Rev. B 87(17), 174303 (2013)

    ADS  Google Scholar 

  3. Surjadi, J.U., Gao, L., Du, H., Li, X., Xiong, X., Fang, N.X., Lu, Y.: Mechanical metamaterials and their engineering applications. Adv. Eng. Mater. 21(3), 1800864 (2019)

    CAS  Google Scholar 

  4. Gardiner, A., Daly, P., Domingo-Roca, R., Windmill, J.F., Feeney, A., Jackson-Camargo, J.C.: Additive manufacture of small-scale metamaterial structures for acoustic and ultrasonic applications. Micromachines 12(6), 634 (2021)

    PubMed  PubMed Central  Google Scholar 

  5. Inman, D.J., Gunasekar, A.: Frequency separation in architected structures using inverse methods. J. Appl. Comput. Mech. 7(4), 2084–2095 (2021)

    Google Scholar 

  6. Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6(1), 14–40 (2015)

    CAS  Google Scholar 

  7. Ma, F., Wang, C., Liu, C., Wu, J.H.: Structural designs, principles, and applications of thin-walled membrane and plate-type acoustic/elastic metamaterials. J. Appl. Phys. 129(23), 231103 (2021)

    CAS  ADS  Google Scholar 

  8. Valipour, A., Kargozarfard, M.H., Rakhshi, M., Yaghootian, A., Sedighi, H.M.: Metamaterials and their applications: an overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236(11), 2171–2210 (2022)

    Google Scholar 

  9. Nobrega, E.D., Gautier, F., Pelat, A., Dos Santos, J.M.C.: Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech. Syst. Signal Process. 79, 192–202 (2016)

    ADS  Google Scholar 

  10. Mu, D., Shu, H., An, S., Zhao, L.: Free and steady forced vibration characteristics of elastic metamaterial beam. AIP Adv. 10(3), 035304 (2020)

    ADS  Google Scholar 

  11. Shu, H., Xu, Y., Mu, D., Wang, X., Wang, Y.: Analysis of vibration characteristics of elastic metamaterial sandwich beam. Int. J. Mod. Phys. B 35(11), 2150160 (2021)

    CAS  ADS  Google Scholar 

  12. Karampour, S., Ghavanloo, E., Fazelzadeh, S.A.: Free vibration analysis of elastic metamaterial circular curved beams with locally resonant microstructures. Arch. Appl. Mech. 93, 323–333 (2023)

    ADS  Google Scholar 

  13. Peng, H., Pai, P.F.: Acoustic metamaterial plates for elastic wave absorption and structural vibration suppression. Int. J. Mech. Sci. 89, 350–361 (2014)

    Google Scholar 

  14. Nouh, M., Aldraihem, O., Baz, A.: Wave propagation in metamaterial plates with periodic local resonances. J. Sound Vib. 341, 53–73 (2015)

    ADS  Google Scholar 

  15. Li, Z., Wang, X.: On the dynamic behaviour of a two-dimensional elastic metamaterial system. Int. J. Solids Struct. 78, 174–181 (2016)

    Google Scholar 

  16. Wang, T., Sheng, M.P., Guo, Z.W., Qin, Q.H.: Flexural wave suppression by an acoustic metamaterial plate. Appl. Acoust. 114, 118–124 (2016)

    Google Scholar 

  17. Lu, K., Wu, J.H., Jing, L., Gao, N., Guan, D.: The two-degree-of-freedom local resonance elastic metamaterial plate with broadband low-frequency bandgaps. J. Phys. D 50(9), 095104 (2017)

    ADS  Google Scholar 

  18. Ma, F., Huang, M., Wu, J.H.: Ultrathin lightweight plate-type acoustic metamaterials with positive lumped coupling resonant. J. Appl. Phys. 121(1), 015102 (2017)

    ADS  Google Scholar 

  19. Sang, S., Sandgren, E.: Study of two-dimensional acoustic metamaterial based on lattice system. J. Vib. Eng. Technol. 6(6), 513–521 (2018)

    Google Scholar 

  20. An, X., Fan, H., Zhang, C.: Elastic wave and vibration bandgaps in two-dimensional acoustic metamaterials with resonators and disorders. Wave Motion 80, 69–81 (2018)

    MathSciNet  ADS  Google Scholar 

  21. Li, Z., Hu, H., Wang, X.: A new two-dimensional elastic metamaterial system with multiple local resonances. Int. J. Mech. Sci. 149, 273–284 (2018)

    Google Scholar 

  22. Chen, Z., He, J., Wang, G.: Vibration bandgaps of piezoelectric metamaterial plate with local resonators for vibration energy harvesting. Shock. Vib. 2019, 1397123 (2019)

    Google Scholar 

  23. Li, S., Dou, Y., Chen, T., Wan, Z., Huang, J., Li, B., Zhang, F.: Evidence for complete low-frequency vibration band gaps in a thick elastic steel metamaterial plate. Mod. Phys. Lett. B 33(04), 1950038 (2019)

    CAS  ADS  Google Scholar 

  24. Miranda Jr, E.J.P., Nobrega, E.D., Ferreira, A.H.R., Dos Santos, J.M.C.: Flexural wave band gaps in a multi-resonator elastic metamaterial plate using Kirchhoff–Love theory. Mech. Syst. Signal Process. 116, 480–504 (2019)

    ADS  Google Scholar 

  25. Miranda Jr, E.J.P., Nobrega, E.D., Rodrigues, S.F., Aranas, C., Jr., Dos Santos, J.M.C.: Wave attenuation in elastic metamaterial thick plates: analytical, numerical and experimental investigations. Int. J. Solids Struct. 204, 138–152 (2020)

    Google Scholar 

  26. Ma, F., Xu, Y., Wu, J.H.: Modal displacement method for extracting the bending wave bandgap of plate-type acoustic metamaterials. Appl. Phys. Express 12(7), 074004 (2019)

    ADS  Google Scholar 

  27. Wang, X., Chen, Y., Zhou, G., Chen, T., Ma, F.: Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation. J. Sound Vib. 459, 114867 (2019)

    Google Scholar 

  28. Li, J., Fan, X., Li, F.: Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression. Compos. Struct. 238, 111969 (2020)

    Google Scholar 

  29. Wang, W., Bonello, B., Djafari-Rouhani, B., Pennec, Y., Zhao, J.: Elastic stubbed metamaterial plate with torsional resonances. Ultrasonics 106, 106142 (2020)

    PubMed  Google Scholar 

  30. Ren, T., Liu, C., Li, F., Zhang, C.: Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech. 231(10), 4035–4053 (2020)

    MathSciNet  Google Scholar 

  31. Wang, T.: Tunable band gaps in an inertant metamaterial plate with two-degree-of-freedom local resonance. Phys. Lett. A 384(21), 126420 (2020)

    MathSciNet  CAS  Google Scholar 

  32. Cinefra, M., de Miguel, A.G., Filippi, M., Houriet, C., Pagani, A., Carrera, E.: Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera unified formulation finite elements. Mech. Adv. Mater. Struct. 28(5), 476–485 (2021)

    Google Scholar 

  33. Peikkhosh, S.P., Dardel, M., Ghasemi, M.H.: Enhancing bandwidth of metamaterial plate with linear and nonlinear passive absorbers. Int. J. Non-Linear Mech. 135, 103769 (2021)

    ADS  Google Scholar 

  34. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)

    Google Scholar 

  35. Wang, T., Guo, H., Chen, M., Dong, W.: Theoretical modeling and analysis of vibroacoustic characteristics of an acoustic metamaterial plate. Acta Mech. Solida Sin. 35, 775–786 (2022)

    Google Scholar 

  36. Chen, Y., Jin, G., Liu, Z.: Flexural and in-plane vibration analysis of elastically restrained thin rectangular plate with cutout using Chebyshev–Lagrangian method. Int. J. Mech. Sci. 89, 264–278 (2014)

    Google Scholar 

  37. Lyon, R.H.: In-plane contribution to structural noise transmission. Noise Control Eng. J. 26(1), 22–27 (1986)

    Google Scholar 

  38. Bardell, N.S., Langley, R.S., Dunsdon, J.M.: On the free in-plane vibration of isotropic rectangular plates. J. Sound Vib. 191(3), 459–467 (1996)

    ADS  Google Scholar 

  39. Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    CAS  PubMed  ADS  Google Scholar 

  40. Huang, H.H., Sun, C.T.: Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philos. Mag. 91(6), 981–996 (2011)

    CAS  ADS  Google Scholar 

  41. Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51(7–8), 1534–1541 (2014)

    Google Scholar 

  42. Wang, G., Shao, L.H., Liu, Y.Z., Wen, J.H.: Accurate evaluation of lowest band gaps in ternary locally resonant phononic crystals. Chin. Phys. 15, 1843–1848 (2006)

    Google Scholar 

  43. Xing, Y.F., Liu, B.: Exact solutions for the free in-plane vibrations of rectangular plates. Int. J. Mech. Sci. 51(3), 246–255 (2009)

    Google Scholar 

  44. Xu, C., Chen, W., Hao, H.: The influence of design parameters of engineered aggregate in metaconcrete on bandgap region. J. Mech. Phys. Solids 139, 103929 (2020)

    Google Scholar 

  45. Liu, Y., Shi, D., He, H., Liu, S., Fan, H.: Double-resonator based metaconcrete composite slabs and vibration attenuation mechanism. Eng. Struct. 262, 114392 (2022)

    Google Scholar 

  46. Zhang, E., Zhao, H., Lu, G., Chen, P., Yang, H.: Design and evaluation of dual-resonant aggregates metaconcrete. Latin Am. J. Solids Struct. 20, e479 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeal Ghavanloo.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karampour, S., Ghavanloo, E. & Fazelzadeh, S.A. In-plane vibration characteristics of metamaterial plates with locally resonant microstructures. Acta Mech 235, 819–831 (2024). https://doi.org/10.1007/s00707-023-03781-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03781-2

Navigation