Skip to main content
Log in

Effect of bias current of active magnetic bearing on Sommerfeld effect characterization in an unbalanced rotor dynamic system

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Sommerfeld effect is a nonlinear jump phenomenon which occurs in unbalanced rotor–motor system, and its characteristics provide an idea of power required to operate the system in the post-resonance region. In this article, the steady-state and full transient characterization of Sommerfeld effect in an unbalanced rotor–motor active magnetic bearing system is studied by considering the nonlinear bearing force of the active magnetic bearing (AMB) in the system equation. The homotopy perturbation method (HPM) is used to solve the nonlinear coupled second-order differential equations of the 16-pole leg AMB system analytically, and the steady-state vibration amplitude of the rotor dynamic system is calculated using the same method. The numerical power balance technique is used to study the steady-state Sommerfeld effect in the system, and its characterization provided the range of unachievable speed range for the rotor dynamic system. The full transient analysis of the rotor–motor AMB system is done analytically, and the exact voltage requires to pass through the resonance, while the system accelerated by the motor is obtained. From the steady-state analysis, it is observed that as the bias current is increased from 0 to 20 A, the jump voltage required to escape resonance has been decreased from 94.7 to 71.5 V. From frequency response curve, it is also observed that as the bias current is increased, it decreases the steady-state vibration amplitude up to 13.8% and a peculiar phenomenon like shifting of resonance is also occurred. It is also observed that percentage of reduction in the jump voltage required for passage through resonance are obtained as 4.5%, 17%, and 24% as the bias current supply to the AMB is increased from 0 to 5, 15 A, and 20 A, respectively, for transient analysis. Both the steady-state and transient responses were attained by increasing the bias current supply to the AMB system, and it is observed that the system vibration amplitude is reduced significantly at the resonance while increasing the bias current. The Sommerfeld effect characterization with respect to bias current supply to the AMB system is provided a vital idea of major reduction in the required jump voltage for passage through the resonance and achievable rotor speeds to operate the system in the post-resonance region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Maslen, E.H., Schweitzer, G.: Magnetic bearings: theory, design, and application to rotating machinery Berlin. Springer-Verlag, Berlin Heidelberg, Heidelberg (2009)

    Book  Google Scholar 

  2. Ji, J.C., Hansen, C.H., Zander, A.C.: Nonlinear dynamics of magnetic bearing systems. J. Intell. Mater. Syst. Struct. 19, 1471–1491 (2008)

    Article  Google Scholar 

  3. Ji, J.C., Hansen, C.H.: Non-linear oscillations of a rotor in active magnetic bearings. J. Sound Vib. 240, 599–612 (2001)

    Article  ADS  Google Scholar 

  4. Zhang, W., Zu, J.W.: Analysis of nonlinear dynamics for a rotor-active magnetic bearing system with time-varying stiffness: Part I—formulation and local bifurcations. ASME Int. Mech. Eng. Congress and Exposition. 37122, 631–640 (2003)

    Google Scholar 

  5. Ji, J.C., Leung, A.Y.T.: Non-linear oscillations of a rotor-magnetic bearing system under superharmonic resonance conditions. Int. J. Non-Linear Mech. 38, 829–835 (2003)

    Article  Google Scholar 

  6. Zhang, W., Zhan, X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41, 331–359 (2005)

    Article  MathSciNet  Google Scholar 

  7. Eissa, M., Kamel, M., Bauomy, H.S.: Dynamics of an AMB-rotor with time varying stiffness and mixed excitations. Meccanica 47, 585–601 (2012)

    Article  MathSciNet  Google Scholar 

  8. Saeed, N.A., Eissa, M., El-Ganini, W.A.: Nonlinear oscillations of rotor active magnetic bearings system. Nonlinear Dyn. 74, 1–20 (2013)

    Article  MathSciNet  Google Scholar 

  9. Heydari, A., Mirparizi, M., Shakeriaski, F., Samani, F.S., Keshavarzi, M.: Nonlinear vibration analysis of a rotor supported by magnetic bearings using homotopy perturbation method. Propulsion and Power Research. 6, 223–232 (2017)

    Article  Google Scholar 

  10. Wu, R., Zhang, W., Yao, M. H.: Analysis of nonlinear dynamics of a rotor-active magnetic bearing system with 16-pole legs. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME. 58202 (2017).

  11. Wu, R., Zhang, W., Yao, M. H.: Nonlinear vibration of a rotor-active magnetic bearing system with 16-pole legs. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASME. 58202 (2017).

  12. Wu, R.Q., Zhang, W., Yao, M.H.: Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness. Mech. Syst. Signal Process. 100, 113–134 (2018)

    Article  ADS  Google Scholar 

  13. Saeed, N.A., Kandil, A.: Lateral vibration control and stabilization of the quasiperiodic oscillations for rotor-active magnetic bearings system. Nonlinear Dyn. 98, 1191–1218 (2019)

    Article  Google Scholar 

  14. Kandil, A.: Investigation of the whirling motion and rub/impact occurrence in a 16-pole rotor active magnetic bearings system with constant stiffness. Nonlinear Dyn. 102, 2247–2265 (2020)

    Article  Google Scholar 

  15. Zhang, W., Wu, R. Q., Siriguleng, B.: Nonlinear vibrations of a rotor-active magnetic bearing system with 16-pole legs and two degrees of freedom. Shock and Vibration. 1–29 (2020).

  16. Kandil, A., Sayed, M., Saeed, N. A.: On the nonlinear dynamics of constant stiffness coefficients 16-pole rotor active magnetic bearings system. European Journal of Mechanics-A/Solids. 84, (2020).

  17. Zhang, X., Sun, Z., Zhao, L., Yan, X., Zhao, J., Shi, Z.: Analysis of supercritical pitchfork bifurcation in active magnetic bearing-rotor system with current saturation. Nonlinear Dyn. 104, 103–123 (2021)

    Article  Google Scholar 

  18. Karthikeyan, M., Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect characterization in rotors with non-ideal drive from ideal drive response and power balance. Mech. Mach. Theory 91, 269–288 (2015)

    Article  Google Scholar 

  19. Bisoi, A., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld effect in a two-disk rotor dynamic system at various unbalance conditions. Meccanica 53, 681–701 (2018)

    Article  MathSciNet  Google Scholar 

  20. Jha, A.K., Dasgupta, S.S.: Attenuation of Sommerfeld effect in an internally damped eccentric shaft-disk system via active magnetic bearings. Meccanica 54, 311–320 (2019)

    Article  MathSciNet  Google Scholar 

  21. Nayfeh, A. H., Balachandran, B.: Applied nonlinear dynamics: analytical, computational, and experimental methods. John Wiley & Sons (2008).

  22. Bisoi, A., Bharti, S.K., Samantaray, A.K., Bhattacharyya, R.: Sommerfeld Effect characterization in anisotropic non-ideal rotor system. In: Dutta, S., Inan, E., Dwivedy, S.K. (eds.) Advance in rotor dynamics, control, and structural health monitoring select proceeding of ICOVP, pp. 51–61. Springer, Singapore (2020)

    Chapter  Google Scholar 

  23. Phadatare, P.H., Pratiher, B.: Nonlinear modelling, dynamics, and chaos in a large deflection model of a rotor-disk-bearing system under geometric eccentricity and mass unbalance. Acta Mech. 231, 907–928 (2020)

    Article  MathSciNet  Google Scholar 

  24. Mystkowski, A.: µ-synthesis control of flexible modes of AMB rotor. Acta Mechanica. 4 (2010).

  25. Mystkowski, A., Pawluszewicz, E.: Remarks on some robust nonlinear observer and state-feedback zero-bias control of AMB. In Proceedings of the 2015 16th International Carpathian Control Conference (ICCC). IEEE. pp.328–333 (2015)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfa Bisoi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$${F}_{1}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}\gamma +y\mathrm{sin}\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}\gamma +y\mathrm{sin}\gamma \right)\right)}^{2}}\right]$$
(A1)
$${F}_{2}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}3\gamma +y\mathrm{sin}3\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}3\gamma +y\mathrm{sin}3\gamma \right)\right)}^{2}}\right]$$
(A2)
$${F}_{3}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}5\gamma +y\mathrm{sin}5\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}5\gamma +y\mathrm{sin}5\gamma \right)\right)}^{2}}\right]$$
(A3)
$${F}_{4}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}7\gamma +y\mathrm{sin}7\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}7\gamma +y\mathrm{sin}7\gamma \right)\right)}^{2}}\right]$$
(A4)
$${F}_{5}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}9\gamma +y\mathrm{sin}9\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}9\gamma +y\mathrm{sin}9\gamma \right)\right)}^{2}}\right]$$
(A5)
$${F}_{6}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}11\gamma +y\mathrm{sin}11\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}y+{K}_{d}\dot{y}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}11\gamma +y\mathrm{sin}11\gamma \right)\right)}^{2}}\right]$$
(A6)
$${F}_{7}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}13\gamma +y\mathrm{sin}13\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}13\gamma +y\mathrm{sin}13\gamma \right)\right)}^{2}}\right]$$
(A7)
$${F}_{8}={K}_{m}\left[\frac{\left({{I}_{0}-\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}-\left(x\mathrm{cos}15\gamma +y\mathrm{sin}15\gamma \right)\right)}^{2}}-\frac{\left({{I}_{0}+\left({K}_{p}x+{K}_{d}\dot{x}\right)}^{2}\right)}{{\left({S}_{0}+\left(x\mathrm{cos}15\gamma +y\mathrm{sin}15\gamma \right)\right)}^{2}}\right]$$
(A8)

Appendix B

$$\begin{aligned} \frac{\omega }{{2\pi }}\mathop \smallint \limits_{0}^{{2\pi /\omega }} D_{x} \dot{x}~dt & =0.5C{\omega }^{2}\left[{X}_{0}^{2}++2{X}_{0}{X}_{11}+{X}_{11}^{2}+9{X}_{13}^{2}\right]\\ &\quad+{0.125\beta }_{3}{\omega }^{2}\left[{X}_{0}^{4}+4{X}_{11}{X}_{0}^{3}+4{X}_{13}{A}_{0}^{3}+6{X}_{11}^{2}{X}_{0}^{2}+12{X}_{13}{X}_{11}{X}_{0}^{2}+20{X}_{13}^{2}{X}_{0}^{2}+4{X}_{0}{X}_{11}^{3} \right.\\ &\quad \left.+12{X}_{13}{X}_{0}{X}_{11}^{2}+40{A}_{0}{X}_{11}{X}_{13}^{2}+{X}_{11}^{4}+4{X}_{13}{X}_{11}^{3}+20{X}_{11}^{2}{X}_{13}^{2}+{9X}_{13}^{4}\right]\\ &\quad+{0.125\beta }_{4}{\omega }^{2}\left[3{X}_{0}^{4}+6{X}_{11}{X}_{0}^{3}-6{X}_{13}{X}_{0}^{3}+3{X}_{11}^{2}{X}_{0}^{2}-6{X}_{11}{X}_{13}{X}_{0}^{2}+18{X}_{13}^{2}{X}_{0}^{2}+{Y}_{11}^{2}{X}_{0}^{2}\right.\\ &\quad \left.-2{Y}_{13}{Y}_{11}{X}_{0}^{2}+2{Y}_{13}^{2}{X}_{0}^{2}+2{X}_{0}{X}_{11}{Y}_{11}^{2}-4{X}_{0}{X}_{11}{Y}_{11}{Y}_{13}+4{X}_{0}{X}_{11}{Y}_{13}^{2}+6{X}_{0}{X}_{13}{Y}_{11}^{2}\right.\\ &\quad \left.+{{X}_{11}^{2}Y}_{11}^{2}-2{X}_{11}^{2}{Y}_{11}{Y}_{13}+{{2X}_{11}^{2}Y}_{13}^{2}+6{X}_{11}{X}_{13}{Y}_{11}^{2}+{{18X}_{13}^{2}Y}_{11}^{2}+{{9X}_{13}^{2}Y}_{13}^{2}\right]\\ &\quad+{0.25\beta }_{5}{\omega }^{3}\left[{Y}_{11}{X}_{0}^{3}+3{Y}_{13}{X}_{0}^{3}+2{X}_{11}{Y}_{11}{X}_{0}^{2}+6{X}_{11}{Y}_{13}{X}_{0}^{2}+2{Y}_{11}{X}_{13}{X}_{0}^{2}+18{Y}_{13}{X}_{13}{X}_{0}^{2}\right.\\ &\quad \left.+{X}_{0}{Y}_{11}{X}_{11}^{2}+3{X}_{0}{Y}_{13}{X}_{11}^{2}+2{X}_{0}{X}_{11}{Y}_{11}{X}_{13}+18{X}_{0}{X}_{11}{X}_{13}{Y}_{13}\right]\\ &\quad-{0.125\beta }_{7}{\omega }^{2}\left[{X}_{0}^{4}+2{X}_{11}{X}_{0}^{3}+2{X}_{13}{X}_{0}^{3}+{X}_{11}^{2}{X}_{0}^{2}+2{X}_{11}{X}_{13}{X}_{0}^{2}-{Y}_{11}^{2}{X}_{0}^{2}-2{Y}_{11}{Y}_{13}{X}_{0}^{2}\right.\\ &\quad \left.-2{X}_{11}{X}_{0}{Y}_{11}^{2}-4{X}_{0}{X}_{11}{Y}_{11}{Y}_{13}-2{X}_{13}{X}_{0}{Y}_{11}^{2}-20{X}_{0}{Y}_{11}{X}_{13}{Y}_{13}-{X}_{11}^{2}{Y}_{11}^{2}\right.\\ &\quad \left.-2{Y}_{11}{Y}_{13}{X}_{11}^{2}-2{X}_{11}{X}_{13}{Y}_{11}^{2}-20{X}_{11}{Y}_{11}{Y}_{13}{X}_{13}-{{9X}_{13}^{2}Y}_{13}^{2}\right]\end{aligned}$$
(B1)
$$\begin{aligned} \frac{\omega }{{2\pi }}\mathop \smallint \limits_{0}^{{2\pi /\omega }}{D}_{x}\dot{y} dt&=0.5C{\omega }^{2}\left[{X}_{0}{Y}_{11}+{Y}_{11}{X}_{11}+9{X}_{13}{Y}_{13}\right]\\& \quad +{0.125\beta }_{3}{\omega }^{2}\left[{3Y}_{13}{X}_{0}^{3}+3{X}_{11}{Y}_{11}{X}_{0}^{2}+9{X}_{11}{Y}_{13}{X}_{0}^{2}+9{Y}_{11}{X}_{13}{X}_{0}^{2}+18{X}_{13}{Y}_{13}{X}_{0}^{2}\right. \\ &\quad \left.+3{X}_{0}{Y}_{11}{X}_{11}^{2}+9{X}_{0}{Y}_{13}{X}_{11}^{2}+2{X}_{11}{Y}_{11}{X}_{0}{X}_{13}+36{X}_{11}{X}_{0}{Y}_{13}{X}_{13}+2{X}_{0}{Y}_{11}{X}_{13}^{2}\right. \\ &\quad \left.+{Y}_{11}{X}_{11}^{3}+{3Y}_{13}{X}_{11}^{3}+{X}_{13}{Y}_{11}{X}_{11}^{2}+18{X}_{13}{Y}_{13}{X}_{11}^{2}+2{X}_{11}{Y}_{11}{X}_{13}^{2}+9{Y}_{13}{X}_{13}^{3}\right]\\& \quad +{0.125\beta }_{4}{\omega }^{2}\left[{Y}_{11}{X}_{0}^{3}-{Y}_{13}{X}_{0}^{3}+{Y}_{11}{X}_{11}{X}_{0}^{2}-{Y}_{13}{X}_{11}{X}_{0}^{2}-{9Y}_{11}{X}_{13}{X}_{0}^{2}+18{Y}_{13}{X}_{13}{X}_{0}^{2}\right. \\ &\quad \left.+{X}_{0}{Y}_{11}^{3}+{B}_{13}{X}_{0}{Y}_{11}^{2}+2{Y}_{11}{X}_{0}{Y}_{13}^{2}+{X}_{11}{Y}_{11}^{3}+{Y}_{13}{X}_{11}{Y}_{11}^{2}+{2Y}_{11}{X}_{11}{Y}_{13}^{2}+{3X}_{13}{Y}_{11}^{3}\right. \\ &\quad \left.+{18Y}_{13}{X}_{13}{Y}_{11}^{2}+{9X}_{13}{Y}_{13}^{3}\right]\\& \quad +{0.125\beta }_{5}{\omega }^{3}{A}_{0}\left[3{X}_{0}^{3}+3{X}_{11}{Y}_{0}^{2}+{X}_{13}{X}_{0}^{2}+3{X}_{0}{Y}_{11}^{2}+18{Y}_{11}{X}_{0}{Y}_{13}+{54X}_{0}{Y}_{13}^{2}\right. \\& \quad \left.+{3X}_{11}{Y}_{11}^{2}+18{Y}_{11}{X}_{11}{Y}_{13}+{54X}_{11}{Y}_{13}^{2}-{3X}_{13}{Y}_{11}^{2}\right]\\& \quad +{0.125\beta }_{6}{\omega }^{3}{X}_{0}\left[{X}_{0}^{3}+3{X}_{11}{X}_{0}^{2}+5{X}_{13}{X}_{0}^{2}+3{X}_{0}{X}_{11}^{2}+10{X}_{0}{X}_{11}{X}_{13}+{18X}_{0}{X}_{13}^{2}\right. \\ &\quad \left.+{X}_{11}^{3}+{5X}_{13}{X}_{11}^{2}+{18X}_{11}{X}_{13}^{2}\right]\\& \quad +{0.125\beta }_{7}{\omega }^{2}\left[{X}_{0}^{3}{Y}_{11}-{5X}_{0}^{3}{Y}_{13}+{Y}_{11}{X}_{11}{X}_{0}^{2}-5{Y}_{13}{X}_{11}{X}_{0}^{2}+{3Y}_{11}{X}_{13}{X}_{0}^{2}\right. \\ &\quad \left.+{2Y}_{13}{X}_{13}{X}_{0}^{2}+{X}_{0}{Y}_{11}^{3}+5{Y}_{13}{X}_{0}{Y}_{11}^{2}+18{Y}_{11}{X}_{0}{Y}_{13}^{2}+{X}_{11}{Y}_{11}^{3}+5{X}_{11}{Y}_{13}{Y}_{11}^{2}\right. \\ &\quad \left.+18{Y}_{11}{X}_{11}{Y}_{13}^{2}-{X}_{13}{Y}_{11}^{3}\right]\end{aligned}$$
(B2)
$$\begin{aligned} \frac{\omega }{{2\pi }}\mathop \smallint \limits_{0}^{{2\pi /\omega }} {D}_{y}\dot{x} dt&=0.5C{\omega }^{2}\left[{X}_{0}{Y}_{11}+{Y}_{11}{X}_{11}+9{X}_{13}{Y}_{13}\right]\\ & \quad+{0.125\beta }_{3}{\omega }^{2}\left[{Y}_{11}{X}_{0}^{3}-{Y}_{13}{X}_{0}^{3}+{Y}_{11}{X}_{11}{X}_{0}^{2}-{Y}_{13}{X}_{11}{X}_{0}^{2}-{9Y}_{11}{X}_{13}{X}_{0}^{2}+18{Y}_{13}{X}_{13}{X}_{0}^{2}\right. \\ & \quad \left.+{X}_{0}{Y}_{11}^{3}+{Y}_{13}{X}_{0}{Y}_{11}^{2}+2{Y}_{11}{X}_{0}{Y}_{13}^{2}+{X}_{11}{Y}_{11}^{3}+{Y}_{13}{X}_{11}{Y}_{11}^{2}+{2Y}_{11}{X}_{11}{Y}_{13}^{2}+{3X}_{13}{Y}_{11}^{3}\right. \\ & \quad \left.+{18Y}_{13}{X}_{13}{Y}_{11}^{2}+{9X}_{13}{Y}_{13}^{3}\right]\\ & \quad+{0.125\beta }_{4}{\omega }^{2}\left[{3Y}_{13}{X}_{0}^{3}+3{X}_{11}{Y}_{11}{X}_{0}^{2}+9{X}_{11}{Y}_{13}{X}_{0}^{2}+9{Y}_{11}{X}_{13}{X}_{0}^{2}+18{X}_{13}{Y}_{13}{X}_{0}^{2}\right. \\ & \quad \left.+3{X}_{0}{Y}_{11}{X}_{11}^{2}+9{X}_{0}{Y}_{13}{X}_{11}^{2}+2{X}_{11}{Y}_{11}{X}_{0}{X}_{13}+36{X}_{11}{X}_{0}{Y}_{13}{X}_{13}+2{X}_{0}{Y}_{11}{X}_{13}^{2}\right. \\ & \quad \left.+{Y}_{11}{X}_{11}^{3}+{3Y}_{13}{X}_{11}^{3}+{X}_{13}{Y}_{11}{X}_{11}^{2}+18{X}_{13}{Y}_{13}{X}_{11}^{2}+2{X}_{11}{Y}_{11}{X}_{13}^{2}+9{Y}_{13}{X}_{13}^{3}\right]\\ & \quad-{0.375\beta }_{5}{\omega }^{3}{X}_{0}\left[{X}_{0}^{3}+3{X}_{0}^{2}{X}_{11}-3{X}_{0}^{2}{X}_{13}+3{X}_{11}^{2}{X}_{0}-6{X}_{0}{X}_{11}{X}_{13}+18{X}_{13}^{2}{X}_{0}\right. \\ & \quad \left.+{X}_{11}^{3}-3{X}_{11}^{2}{X}_{13}+18{X}_{13}^{2}{X}_{11}-{0.125\beta }_{6}{\omega }^{3}{X}_{0}\left[{X}_{0}^{3}+{X}_{0}^{2}{X}_{11}+3{X}_{0}^{2}{X}_{13}+{Y}_{11}^{2}{X}_{0}\right. \right.\\ & \quad \left.\left.-10{X}_{0}{Y}_{11}{Y}_{13}+18{Y}_{13}^{2}{X}_{0}+{Y}_{11}^{2}{X}_{11}-10{X}_{11}{Y}_{11}{Y}_{13}+18{X}_{11}{X}_{13}^{2}-{9X}_{13}{Y}_{11}^{2}\right]\right.\\ & \quad \left.+{0.125\beta }_{7}{\omega }^{2}\left[{X}_{0}^{3}{Y}_{11}-{X}_{0}^{3}{Y}_{13}+3{X}_{11}{Y}_{11}{X}_{0}^{2}-3{X}_{11}{Y}_{13}{X}_{0}^{2}+5{X}_{13}{Y}_{11}{X}_{0}^{2}+2{X}_{13}{Y}_{13}{X}_{0}^{2}\right.\right. \\ & \quad \left.\left.+3{X}_{0}{Y}_{11}{X}_{11}^{2}-3{X}_{0}{Y}_{13}{X}_{11}^{2}+10{X}_{11}{X}_{0}{Y}_{11}{X}_{13}+4{X}_{11}{X}_{0}{Y}_{13}{X}_{13}+18{X}_{0}{Y}_{11}{X}_{13}^{2}\right.\right. \\ & \quad \left.\left.+{Y}_{11}{X}_{11}^{3}-{Y}_{13}{X}_{11}^{3}+5{X}_{13}{Y}_{11}{X}_{11}^{2}+2{X}_{13}{Y}_{13}{X}_{11}^{2}+18{X}_{11}{Y}_{11}{X}_{13}^{2}+{9Y}_{13}{X}_{13}^{2}\right]\right.\end{aligned}$$
(B3)
$$\begin{aligned} \frac{\omega }{{2\pi }}\mathop \smallint \limits_{0}^{{2\pi /\omega }} D_{y} \dot{y}~dt &=0.5C{\omega }^{2}\left[{X}_{0}^{2}+{Y}_{11}^{2}+9{Y}_{13}^{2}\right]\\ & \quad +{0.125\beta }_{3}{\omega }^{2}\left[{X}_{0}^{4}+{2X}_{0}^{2}{Y}_{11}^{2}-12{X}_{0}^{2}{Y}_{11}{Y}_{13}+{20X}_{0}^{2}{Y}_{13}^{2}+{Y}_{11}^{4}+4{Y}_{11}^{3}{Y}_{13}+{20Y}_{11}^{2}{Y}_{13}^{2}+9{Y}_{13}^{4}\right]\\ & \quad+{0.125\beta }_{4}{\omega }^{2}\left[{3X}_{0}^{4}+6{X}_{11}{X}_{0}^{3}+2{X}_{13}{X}_{0}^{3}+{3X}_{0}^{2}{X}_{11}^{2}+2{X}_{11}{X}_{13}{X}_{0}^{2}+{2X}_{0}^{2}{X}_{13}^{2}+{X}_{0}^{2}{Y}_{11}^{2}\right. \\ & \quad \left.+6{Y}_{11}{Y}_{13}{X}_{0}^{2}+18{X}_{0}^{2}{Y}_{13}^{2}+{2X}_{0}{X}_{11}{Y}_{11}^{2}+1{2X}_{0}{X}_{11}{Y}_{11}{Y}_{13}+3{6X}_{0}{X}_{11}{Y}_{13}^{2}\right. \\ & \quad \left.-2{X}_{0}{X}_{13}{Y}_{11}^{2}+{X}_{11}^{2}{Y}_{11}^{2}+6{X}_{11}^{2}{Y}_{11}{Y}_{13}+{18X}_{11}^{2}{Y}_{13}^{2}-2{X}_{11}{X}_{13}{Y}_{11}^{2}+2{X}_{13}^{2}{Y}_{11}^{2}{+9X}_{13}^{2}{Y}_{13}^{2}\right]\\ & \quad-{0.125\beta }_{5}{\omega }^{3}{X}_{0}\left[{X}_{0}^{2}{Y}_{11}-{X}_{0}^{2}{Y}_{13}+{2X}_{0}{X}_{11}{Y}_{11}-{2X}_{0}{X}_{11}{Y}_{13}-6{X}_{0}{X}_{13}{Y}_{11}\right. \\ & \quad \left.+1{8X}_{0}{X}_{13}{Y}_{13}+{X}_{11}^{2}{Y}_{11}-{X}_{11}^{2}{Y}_{13}-6{X}_{11}{Y}_{13}{Y}_{11}+18{X}_{11}{X}_{13}{Y}_{13}\right]\\ & \quad-{\beta }_{6}{\omega }^{3}{X}_{0}{Y}_{13}\left[{X}_{0}^{2}-3{Y}_{11}^{2}\right] \\ & \quad -{0.125\beta }_{7}{\omega }^{2}\left[{X}_{0}^{4}+2{X}_{11}{X}_{0}^{3}+2{X}_{13}{X}_{0}^{3}+{X}_{11}^{2}{X}_{0}^{2}+2{X}_{11}{X}_{13}{X}_{0}^{2}-{Y}_{11}^{2}{X}_{0}^{2}-2{Y}_{11}{Y}_{13}{X}_{0}^{2}\right. \\ & \quad \left.-2{X}_{11}{X}_{0}{Y}_{11}^{2}-4{X}_{0}{X}_{11}{Y}_{11}{Y}_{13}-2{X}_{13}{X}_{0}{Y}_{11}^{2}-20{X}_{0}{Y}_{11}{X}_{13}{Y}_{13}-{X}_{11}^{2}{Y}_{11}^{2}\right. \\ & \quad \left.-2{Y}_{11}{Y}_{13}{X}_{11}^{2}-2{X}_{11}{X}_{13}{Y}_{11}^{2}-20{X}_{11}{Y}_{11}{Y}_{13}{X}_{13}-{{9X}_{13}^{2}Y}_{13}^{2}\right] \end{aligned}$$
(B4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meher, P.K., Ansari, M.A. & Bisoi, A. Effect of bias current of active magnetic bearing on Sommerfeld effect characterization in an unbalanced rotor dynamic system. Acta Mech 235, 907–923 (2024). https://doi.org/10.1007/s00707-023-03772-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03772-3

Navigation