Skip to main content
Log in

Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Flexoelectricity, referring to the electrical polarization generated by strain gradients, is an electromechanical coupling phenomenon in all dielectric materials. Based on the Kirchhoff plate theory, this paper investigates the influence of flexoelectricity on the electromechanical coupling response of piezoelectric circular nanoplates with different electric boundary conditions. Using the variational principle and Gibbs free energy, the governing equations and boundary conditions of piezoelectric nanoplates are derived. The analytical solutions of the deflection, polarization, and induced electric potential are obtained. The results show that the flexoelectric effect is size-dependent and has a more significant influence on the electrostatic responses than the piezoelectric effect at the nanoscale. The results also show that the induced electric potential due to the flexoelectric effect may be helpful for sensing or energy harvesting designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang, Z., Kan, J., Cheng, G., et al.: Influence of multiple piezoelectric effects on sensors and actuators. Mech. Syst. Signal Process. 35, 95–107 (2013)

    Google Scholar 

  2. Lao, C.S., Kuang, Q., Wang, Z.L., et al.: Polymer functionalized piezoelectric-FET as humidity/chemical nanosensors. Appl. Phys. Lett. 90, 262107 (2007)

    Google Scholar 

  3. Tanner, S.M., Gray, J.M., Rogers, C.T., et al.: High-Q GaN nanowire resonators and oscillators. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2815747

    Article  Google Scholar 

  4. Bi, H., Wang, B., Ouyang, H., et al.: Stochastic response of a piezoelectric ribbon-substrate structure under Gaussian white noise. Acta Mech. 232, 3687–3700 (2021)

    MathSciNet  Google Scholar 

  5. Bi, H., Wang, B., Huang, Y., et al.: Nonlinear dynamic performance of buckled piezoelectric ribbon-substrate energy harvester. Compos. Struct. 261, 113570 (2021)

    Google Scholar 

  6. Jiang, W.-A., Han, H., Chen, L.-Q., Bi, Q.-S.: Exploiting self-tuning tristable to improve energy capture from shape memory oscillator. J. Energy Storage 51, 104469 (2022)

    Google Scholar 

  7. Cady, W.G.: Piezoelectricity: an introduction to the theory and applications of electomechanical phenomena in crystals. Phys. Rev. B 34, 5883–5889 (1964)

    Google Scholar 

  8. Tagantsev, A.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883 (1986)

    Google Scholar 

  9. Harden, J., Mbanga, B., Éber, N., et al.: Giant flexoelectricity of bent-core nematic liquid crystals. Phys. Rev. Lett. 97, 157802 (2006)

    Google Scholar 

  10. Cross, L.E.: Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Google Scholar 

  11. Petrov, A.G.: Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. Anal. Chim. Acta 568, 70–83 (2006)

    Google Scholar 

  12. Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015)

    Google Scholar 

  13. Balokas, G., Czichon, S., Rolfes, R.: Neural network assisted multiscale analysis for the elastic properties prediction of 3D braided composites under uncertainty. Compos. Struct. 183, 550–562 (2018)

    Google Scholar 

  14. Ma, W., Cross, L.E.: Large flexoelectric polarization in ceramic lead magnesium niobate. Appl. Phys. Lett. 79, 4420–4422 (2001)

    Google Scholar 

  15. Ma, W., Cross, L.E.: Strain-gradient-induced electric polarization in lead zirconate titanate ceramics. Appl. Phys. Lett. 82, 3293–3295 (2003)

    Google Scholar 

  16. Ma, W., Cross, L.E.: Flexoelectricity of barium titanate. Appl. Phys. Lett. 88, 232902 (2006)

    Google Scholar 

  17. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys.-Solid State 5, 2069–2070 (1964)

    Google Scholar 

  18. Zubko, P., Catalan, G., Buckley, A., et al.: Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007)

    Google Scholar 

  19. Ponomareva, I., Tagantsev, A., Bellaiche, L.: Finite-temperature flexoelectricity in ferroelectric thin films from first principles. Phys. Rev. B 85, 104101 (2012)

    Google Scholar 

  20. Toupin, R.A.: The elastic dielectric. J Ration Mech Anal 5, 849–915 (1956)

    MathSciNet  Google Scholar 

  21. Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Google Scholar 

  22. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    MathSciNet  Google Scholar 

  23. Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J. Appl. Phys. 113, 194102 (2013)

    Google Scholar 

  24. Liang, X., Hu, S., Shen, S.: Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater. Struct. 23, 035020 (2014)

    Google Scholar 

  25. Yue, Y., Xu, K., Chen, T.: A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016)

    Google Scholar 

  26. Liu, Z., Wang, P., Xu, J.: The electro-mechanical coupling responses of functionally graded piezoelectric nanobeams with flexoelectric effect. AIP Adv. (2023). https://doi.org/10.1063/5.0154946

    Article  Google Scholar 

  27. Zhang, Z., Jiang, L.: Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity. J. Appl. Phys. 116, 134308 (2014)

    Google Scholar 

  28. Zhang, Z., Yan, Z., Jiang, L.: Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J. Appl. Phys. 116, 014307 (2014)

    Google Scholar 

  29. Yan, Z.: Size-dependent bending and vibration behaviors of piezoelectric circular nanoplates. Smart Mater. Struct. 25, 035017 (2016)

    Google Scholar 

  30. Yang, W., Liang, X., Shen, S.: Electromechanical responses of piezoelectric nanoplates with flexoelectricity. Acta Mech. 226, 3097–3110 (2015)

    MathSciNet  Google Scholar 

  31. Amir, S., BabaAkbar-Zarei, H., Khorasani, M.: Flexoelectric vibration analysis of nanocomposite sandwich plates. Mech. Based Des. Struct. Mach. 48, 146–163 (2020)

    Google Scholar 

  32. Wang, B., Li, X.-F.: Flexoelectric effects on the natural frequencies for free vibration of piezoelectric nanoplates. J. Appl. Phys. 129, 034102 (2021)

    Google Scholar 

  33. Abdollahi, A., Peco, C., Millan, D., et al.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)

    Google Scholar 

  34. Zhou, Z., Yang, C., Su, Y., et al.: Electromechanical coupling in piezoelectric nanobeams due to the flexoelectric effect. Smart Mater. Struct. 26, 095025 (2017)

    Google Scholar 

  35. Hu, S., Shen, S.: Electric field gradient theory with surface effect for nano-dielectrics. Comput. Mater. Contin. (CMC) 13, 63 (2009)

    Google Scholar 

  36. Majdoub, M., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Google Scholar 

  37. Hu, Y., Wang, J., Yang, F., et al.: The effects of first-order strain gradient in micro piezoelectric-bimorph power harvesters. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 849–852 (2011)

    Google Scholar 

  38. Wang, J., Wang, H., Hu, H., et al.: On the strain-gradient effects in micro piezoelectric-bimorph circular plate power harvesters. Smart Mater. Struct. 21, 015006 (2011)

    Google Scholar 

  39. Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010)

    Google Scholar 

  40. Erturk, A., Inman, D.J.: An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Google Scholar 

  41. Erturk, A., Inman, D.J.: Piezoelectric energy harvesting. Wiley, New York (2011)

    Google Scholar 

  42. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014)

    Google Scholar 

  43. Giannakopoulos, A., Suresh, S.: Theory of indentation of piezoelectric materials. Acta Mater. 47, 2153–2164 (1999)

    Google Scholar 

  44. Ma, W., Cross, L.E.: Flexoelectric effect in ceramic lead zirconate titanate. Appl. Phys. Lett. 86, 072905 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (Nos. 12272148; 11772141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J.W., Wang, P. & Liu, Z.H. Electromechanical coupling in piezoelectric nanoplate due to the flexoelectric effect. Acta Mech 235, 479–492 (2024). https://doi.org/10.1007/s00707-023-03764-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03764-3

Navigation