Skip to main content
Log in

Lord–Shulman and Green–Lindsay-based magneto-thermoelasticity of hollow cylinder

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Current investigation is focused on the response of a hollow cylinder within the framework of generalized magneto-thermoelasticity. It is assumed that cylinder is made from an isotropic and homogeneous material. Cylinder is under thermal and magnetic loads. Boundary conditions and loading of the cylinder are assumed to be axisymmetric so the response of the cylinder also may be assumed to be axisymmetric. The governing equations are established for the cylinder in polar coordinates. To consider the finite speed of temperature wave propagation, two different generalized thermoelasticity theories are used which are Lord–Shulman and Green–Lindsay theories. Also the body force induced by magnetic load is evaluated via the Lorentz force. The obtained equations by these two theories are unified using the definition of auxiliary parameters. The established equations are transformed into dimensionless presentation. After that, by means of the generalized differential quadrature method and Newmark time marching scheme, equations are discreted and traced in time. Results of this study are provided in graphical presentation to show the propagation and reflection of thermal, electrical, mechanical and magnetic waves. It is verified that according to Lord–Shulman and Green–Lindsay theories, temperature propagates with finite speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Chandrasekharaiah, D.C., Srinath, K.S., Debnath, L.: Magneto-thermo-elastic disturbances with thermal relaxation in a solid due to heat sources. Comput. Math. Appl. 15(6–8), 483–490 (1988)

    Google Scholar 

  2. Sharma, J.N., Chand, D.: Transient generalised magneto-thermoelastic waves in a half-space. Int. J. Eng. Sci. 26(9), 951–958 (1988)

    Google Scholar 

  3. Chand, D., Sharma, J.N., Sud, S.P.: Transient generalized magneto-thermo-elastic waves in a rotating half-space. Int. J. Eng. Sci. 28(6), 547–556 (1990)

    Google Scholar 

  4. Kaliski, S., Nowacki, W.: Excitation of mechanical-electromagnetic waves induced by a thermal shock. Bull. Acad. Pol. Sci. Ser. Sci. Technol. 10, 25–33 (1968)

    Google Scholar 

  5. Saxena, H.S., Dhaliwal, R.S., Rokne, J.G.: Half-space problem in one-dimensional generalized magnetothermoelasticity. J. Therm. Stress. 14(1), 65–84 (1991)

    MathSciNet  Google Scholar 

  6. Roychoudhuri, S.K., Banerjee, S.: Magneto-thermoelastic waves induced by a thermal shock in a finitely conducting elastic half space. Int. J. Math. Math. Sci. 19(1), 131–143 (1996)

    Google Scholar 

  7. Abd-alla, A.N., Abbas, I.: A problem of generalized magnetothermoelasticity for an infinite long perfectly conducting cylinder. J. Therm. Stress. 25(11), 1009–1025 (2002)

    Google Scholar 

  8. Tianhu, H., Yapeng, S., Xiaogeng, T.: A two-dimensional generalized thermal shock problem for a half-space in electromagneto-thermoelasticity. Int. J. Eng. Sci. 42(8–9), 809–823 (2004)

    Google Scholar 

  9. Tianhu, H., Li, S.: A two-dimensional generalized electromagneto thermoelastic problem for a half-space. J. Therm. Stress. 29(7), 683–698 (2006)

    Google Scholar 

  10. Ezzat, M.A., Bary, A.A.: State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47(4), 618–630 (2009)

    MathSciNet  Google Scholar 

  11. Ezzat, M.A., Abd-Elall, M.Z.: Generalized magneto-thermoelasticity with modified Ohm’s law. Mech. Adv. Mater. Struct. 17(1), 74–84 (2009)

    MathSciNet  Google Scholar 

  12. Ezzat, M.A., El-Karamany, A.S.: Two-temperature theory in generalized magneto-thermoelasticity with two relaxation times. Meccanica 46, 785–794 (2011)

    MathSciNet  Google Scholar 

  13. Misra, J.C., Samanta, S.C., Chakrabarti, A.K.: Magneto-thermoelastic interaction in an Aeolotropic solid cylinder subjected to a ramp-type heating. Int. J. Eng. Sci. 29(9), 1065–1075 (1991)

    Google Scholar 

  14. Misra, J.C., Samanta, S.C., Chakrabarti, A.K., Misra, S.C.: Magneto-thermoelastic interaction in an infinite elastic continuum with a cylindrical hole subjected to a ramp-type heating. Int. J. Eng. Sci. 29(9), 1505–1514 (1991)

    Google Scholar 

  15. Misra, J.C., Samanta, S.C., Chakrabarti, A.K.: Magnetothermomechanical interaction in an aeolotropic viscoelastic cylinder permeated by a magnetic field subjected to a periodic loading. Int. J. Eng. Sci. 29(10), 1209–1216 (1991)

    Google Scholar 

  16. He, T., Li, Y., Shi, S.: Finite element mehtod to a generalised electro-magneto-thermoelastic problem with diffusion. Int. J. Appl. Mech. 4(4), 1250046 (2012)

    Google Scholar 

  17. Sarkar, N., Lahiri, A.: temperature rate dependent generalised thermoelasticity with modified Ohm’s law. Int. J. Comput. Mater. 1(4), 1250031 (2012)

    Google Scholar 

  18. Sherief, H.H., Khader, S.E.: Propagation of discontinuities in electromagneto generalized thermoelasticity in cylindrical regions. Meccanica 48, 2511–2523 (2013)

    MathSciNet  Google Scholar 

  19. Ma, Y., Liu, Z., He, T.: Two-dimensional electromagneto-thermoelastic coupled problem under fractional order theory of thermoelasticity. J. Therm. Stress. 41(5), 645–657 (2018)

    Google Scholar 

  20. Sadeghi, M., Kiani, Y.: Generalized magneto-thermoelasticity of a layer based on the Lord-Shulman and Green-Lindsay theories. J. Therm. Stress. 45(4), 319–340 (2022)

    Google Scholar 

  21. Othman, M.I.A., Abbas, I.: Effect of rotation on magneto-thermoelastic homogeneous isotropic hollow cylinder with energy dissipation using finite element method. J. Comput. Theor. Nanosci. 12(9), 2399–2404 (2015)

    Google Scholar 

  22. Said, S.M., Abd-Elaziz, E.M., Othman, M.I.A.: A two-temperature model and fractional order derivative in a rotating thick hollow cylinder with the magnetic field. Indian J. Phys. 97, 3057–3064 (2023)

    Google Scholar 

  23. Abd-Elaziz, E.M., Othman, M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation. ZAMM 99(8), e201900079 (2019)

    MathSciNet  Google Scholar 

  24. Abbas, I.A.: Generalized magneto-thermoelasticity in a nonhomogeneous isotropic hollow cylinder using the finite element method. Arch. Appl. Mech. 79(1), 41–50 (2009)

    Google Scholar 

  25. Sherief, H.H., Ezzat, M.A.: A problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder. J. Eng. Math. 34, 387–402 (1998)

    MathSciNet  Google Scholar 

  26. Ezzat, M.A., El-Bary, A.A.: Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder. Int. J. Therm. Sci. 108, 62–69 (2016)

    Google Scholar 

  27. Ezzat, M.A., El-Bary, A.A.: State space approach of two-temperature magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47(4), 618–630 (2009)

    MathSciNet  Google Scholar 

  28. Ezzat, M.A., El-Bary, A.A., Ezzat, S.: Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers. Manage. 52(2), 934–945 (2011)

    Google Scholar 

  29. Bagri, A., Taheri, H., Eslami, M.R., Fariborz, S.: Generalized coupled thermoelasticity of a layer. J. Therm. Stress. 29(4), 359–370 (2006)

    Google Scholar 

  30. Bagri, A., Eslami, M.R.: A unified generalized thermoelasticity formulation; Application to thick functionally graded cylinders. J. Therm. Stress. 30(9–10), 911–930 (2007)

    Google Scholar 

  31. Shariyat, M.: Nonlinear transient stress and wave propagation analyses of the FGM thick cylinders, employing a unified generalized thermoelasticity theory. Int. J. Mech. Sci. 65(1), 24–37 (2012)

    Google Scholar 

  32. Kouchakzadeh, M.A., Entezari, A.: Analytical solution of classic coupled thermoelasticity problem in a rotating disk. J. Therm. Stress. 38(11), 1269–1291 (2015)

    Google Scholar 

  33. Kiani, Y.: Interaction of thermal and mechanical waves in axisymmetric generalized thermoelasticity of rotating disk. Waves Random Complex Media 31(3), 420–434 (2021)

    MathSciNet  Google Scholar 

  34. Entezari, A., Kouchakzadeh, M.A.: Analytical solution of generalized coupled thermoelasticity problem in a rotating disk subjected to thermal and mechanical shock loads. J. Therm. Stress. 39(12), 1588–1609 (2016)

    Google Scholar 

  35. Kiani, Y., Eslami, M.R.: Nonlinear generalized thermoelasticity of an isotropic layer based on Lord-Shulman theory. Eur. J. Mech. A Solids 61, 245–253 (2017)

    MathSciNet  Google Scholar 

  36. Entezari, A., Filippi, M., Carrera, E., Kouchakzadeh, M.A.: 3D-wave propagation in generalized thermoelastic functionally graded disks. Compos. Struct. 206, 941–951 (2018)

    Google Scholar 

  37. Jani, S.M.H., Kiani, Y.: Symmetric thermo-electro-elastic response of piezoelectric hollow cylinder under thermal shock using Lord-Shulman theory. Int. J. Struct. Stab. Dyn. 20(5), 2050059r (2020)

    MathSciNet  Google Scholar 

  38. Jani, S.M.H., Kiani, Y.: Generalized thermo-electro-elasticity of a piezoelectric disk using Lord-Shulman theory. J. Therm. Stress. 43(4), 473–488 (2020)

    Google Scholar 

  39. Kiani, Y., Karimi Zeverdejani, P.: Thermally nonlinear response of an exponentially graded disk using the Lord-Shulman model. J. Therm. Stress. 43(12), 1547–1563 (2020)

    Google Scholar 

  40. Karimi Zeverdejani, P., Kiani, Y.: Radially symmetric response of an FGM spherical pressure vessel under thermal shock using the thermally nonlinear lord-shulman model. Int. J. Press. Vessels Pip. 182, 104065 (2020)

    Google Scholar 

  41. Kiani, Y., Eslami, M.R.: The GDQ approach to thermally nonlinear generalized thermoelasticity of a hollow sphere. Int. J. Mech. Sci. 118, 195–204 (2016)

    Google Scholar 

  42. Kiani, Y., Eslami, M.R.: A GDQ approach to thermally nonlinear generalized thermoelasticity of disks. J. Therm. Stress. 40(1), 121–133 (2017)

    Google Scholar 

  43. Taghizadeh, A., Kiani, Y.: Generalized thermoelasticity of a piezoelectric layer. J. Therm. Stress. 42(7), 863–873 (2019)

    Google Scholar 

  44. Abbas, I.A.: Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity. Forsch. Ingenieurwes. 71, 215–222 (2007)

    Google Scholar 

  45. Alzahrani, F., Hobiny, A., Abbas, I., Narin, M.: An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry 12(4), 848 (2020)

    Google Scholar 

  46. Abbas, I., Kumar, R.: 2D deformation in initially stressed thermoelastic half-space with voids. Steel Compos. Struct. 20(5), 1103–1117 (2016)

    Google Scholar 

  47. Zenkour, A., Abbas, I.: Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. Int. J. Struct. Stab. Dyn. 14(7), 1450025 (2014)

    MathSciNet  Google Scholar 

  48. Abbas, I., Hobiny, A., Marin, M.: Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14, 1369–1376 (2020)

    Google Scholar 

  49. Marin, M., Hobiny, A., Abbas, I.: The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics 9(14), 1606 (2021)

    Google Scholar 

  50. Abbas, I.A., Othman, M.I.A.: Generalized thermoelasticity of the thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli. Chin Phys B 21, 014601 (2012)

    Google Scholar 

  51. Othman, M.I.A., Abbas, I.A.: Thermal shock problem in a homogeneous isotropic hollow cylinder with energy dissipation. Comput. Math. Model. 22, 266–277 (2011)

    MathSciNet  Google Scholar 

  52. Ezzat, M.A., Othman, M.I., Elkaramany, A.S.: The Dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity. J. Therm. Stress. 24(12), 1159–1176 (2001)

    Google Scholar 

  53. Ezzat, M.A., Othman, M.I., Elkaramany, A.S.: State space approach to generalized thermo-viscoelasticity with two relaxation times. Int. J. Eng. Sci. 40(3), 283–302 (2002)

    MathSciNet  Google Scholar 

  54. Ezzat, M.A., Othman, M.I., Elkaramany, A.S.: State space approach to two-dimensional generalized thermoviscoelasticity with one relaxation time. J. Therm. Stress. 25(3), 295–316 (2002)

    Google Scholar 

  55. Elkaramany, A.S., Ezzat, M.A.: Boundary integral equation formulation for the generalized thermoviscoelasticity with two relaxation times. Appl. Math. Comput. 151(2), 347–362 (2004)

    MathSciNet  Google Scholar 

  56. Ezzat, M.A.: State space approach to generalized magneto-thermoelasticity with two relaxation times in a medium of perfect conductivity. Int. J. Eng. Sci. 35(8), 741–752 (1997)

    Google Scholar 

  57. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses, Advanced Theory and Applications. Springer, Amsterdam (2009)

    Google Scholar 

  58. Ignaczak, J., Ostoja-Starzewsk, M.: Thermoelasticity with Finite Wave Speed. Oxford University Press, NewYork (2009)

    Google Scholar 

  59. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Google Scholar 

  60. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Math. Phys. 15(5), 299–309 (1967)

    Google Scholar 

  61. Reddy, J.N.: An Introduction to Nonlinear Finite Element Method. Oxford University Press, Oxford (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour Dehkordi, M., Kiani, Y. Lord–Shulman and Green–Lindsay-based magneto-thermoelasticity of hollow cylinder. Acta Mech 235, 51–72 (2024). https://doi.org/10.1007/s00707-023-03739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03739-4

Navigation