Skip to main content
Log in

Analysis of non-uniform laminar flow past a circular cylinder on the flow and sound field evolution using direct numerical simulation approach

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper analyses the effects of a non-uniform laminar flow past a circular cylinder using the direct numerical simulation approach. Compared to the cylinder immersed in a uniform flow case, modifications caused by the non-uniform approaching flow on the evolution of the flow and sound fields are studied in detail in the present work. The prescribed non-uniform velocity profile at the inlet has a Gaussian distribution and imitates a jet or a wake flow velocity profile. The sound is generated due to periodic vortex shedding behind the circular cylinder. The frequency of vortex shedding and the strength of the shed vortices depend on the inflow velocity profile. Hence, variation of the inflow velocity profile alters the shed vortices, changing the generated sound field. It is observed that the amount of gain or deficit present in the prescribed inflow velocity profile compared to the uniform inflow profile alters the sound field information. The jet kind of inflow profile creates a sound of higher frequency and intensity in contrast to the wake kind of inflow profile. The presence of shear in the inflow velocity profile is also expected to change the sound propagation direction. However, in present simulations, the distance over which sound propagation is considered is small compared to the wavelength of the sound waves, and sound beam drift effects are not observed much.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availibility

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

  2. Zdravkovich, M.M.: Flow Around Circular Cylinders, vol. 1, pp. 375–378. Oxford University Press Inc (1997)

    Book  Google Scholar 

  3. Norberg, C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 57–96 (2003)

    Article  Google Scholar 

  4. Inoue, O., Hatakeyama, N.: Sound generation by a two-dimensional circular cylinder in a uniform flow. J. Fluid Mech. 471, 285–314 (2002)

    Article  Google Scholar 

  5. Jordan, S., Fromm, J.E.: Laminar flow past a circle in a shear flow. Phys. Fluids 15, 972–976 (1972)

    Article  Google Scholar 

  6. Masaru, M., Tamura, H., Arie, M.: Vortex shedding from a circular cylinder in moderate-Reynolds-number shear flow. J. Fluid Mech. 101, 721–735 (1980)

    Article  Google Scholar 

  7. Powell, A.: Theory of Vortex Sound. J. Acoust. Soc. Am. 36, 177–195 (1964)

    Article  MathSciNet  Google Scholar 

  8. Lighthill, M.J., Newman, M.H.A.: On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211(1107), 564–587 (1952)

    Article  MathSciNet  Google Scholar 

  9. Curle, N., Lighthill, M.J.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231(1187), 505–514 (1955)

    Article  MathSciNet  Google Scholar 

  10. Cox, J., Brentner, K., Rumsey, C.: Computation of vortex shedding and radiated sound for a circular cylinder: subcritical to transcritical Reynolds numbers. Theoret. Comput. Fluid Dyn. 12(1), 233–253 (1998)

    Article  Google Scholar 

  11. Ma, R., Zhansheng, L., Zhang, G., Doolan, C.J., Moreau, D.J.: Control of Aeolian tones from a circular cylinder using forced oscillation. Aerosp. Sci. Technol. 94, 1270–9638 (2019)

    Article  Google Scholar 

  12. Ma, R., Zhansheng, L., Zhang, G., Doolan, C.J., Moreau, D.J.: Acoustic analysis of a forced-oscillating cylinder in flow using a hybrid method. Aerosp. Sci. Technol. 106(106137), 1270–9638 (2020)

    Google Scholar 

  13. Chen, G., Zang, B., Azarpeyvand, M.: Numerical investigation on aerodynamic noise of flow past a cylinder with different spanwise lengths. Phys. Fluids 35(3), 035128 (2023)

    Article  Google Scholar 

  14. Jacob, J., Bhattacharya, S.K.: Aerodynamic noise from long circular and non-circular cylinders using large eddy simulations. Int. J. Aeroacoust. 21(3–4), 142–167 (2022)

    Article  Google Scholar 

  15. Mahato, B., Ganta, N., Bhumkar, Y.G.: Direct simulation of sound generation by a two-dimensional flow past a wedge. Phys. Fluids 30(9), 096101 (2018)

    Article  Google Scholar 

  16. Ganta, N., Mahato, B., Bhumkar, Y.G.: Analysis of sound generation by flow past a circular cylinder performing rotary oscillations using direct simulation approach. Phys. Fluids 31(2), 026104 (2019)

    Article  Google Scholar 

  17. Inoue, O.: Effect of initial condition on the sound generation by flow past a rotary-oscillating circular cylinder. Phys. Fluids 18(11), 118106 (2006)

    Article  Google Scholar 

  18. Hatakeyama, N., Inoue, O.: Direct numerical simulation of noise from an airfoil in a uniform flow. In: 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) (2006)

  19. Li, S., Rival, D., Wu, X.: Sound source and pseudo-sound in the near field of a circular cylinder in subsonic conditions. J. Fluid Mech. 919, A43 (2021)

    Article  MathSciNet  Google Scholar 

  20. Lei, C., Cheng, L., Kavanagh, K.: A finite difference solution of the shear flow over a circular cylinder. Ocean Eng. 27(3), 271–290 (2000)

    Article  Google Scholar 

  21. Wu, T., Chen, C.F.: Laminar boundary-layer separation over a circular cylinder in uniform shear flow. Acta Mech. 144, 71–82 (2000)

    Article  Google Scholar 

  22. Kumar, A., Ray, R.K.: Structural bifurcation analysis of vortex shedding from shear flow past circular cylinder. J. Comput. Appl. Math. 38, 121 (2019)

    MathSciNet  Google Scholar 

  23. Rohlf, K., D’Alessio, S.: Uniform shear flow past a circular cylinder. Acta Mech. 178, 199–222 (2005)

    Article  Google Scholar 

  24. Sumner, D., Akosile, O.O.: On uniform planar shear flow around a circular cylinder at subcritical Reynolds number. J. Fluids Struct. 18(3), 441–454 (2003)

    Article  Google Scholar 

  25. Kang, S.: Uniform-shear flow over a circular cylinder at low Reynolds numbers. J. Fluids Struct. 22(4), 541–555 (2006)

    Article  Google Scholar 

  26. Fallah, K., Fardad, A., Fattahi, E.: Numerical simulation of planar shear flow passing a rotating cylinder at low Reynolds numbers. Acta Mech. 223, 221–236 (2012)

    Article  MathSciNet  Google Scholar 

  27. Bhattacharyya, S., Maiti, D.K.: Vortex shedding suppression for laminar flow past a square cylinder near a plane wall: a two-dimensional analysis. Acta Mech. 184, 15–31 (2006)

    Article  Google Scholar 

  28. Murray, J.D.: Non-uniform shear flow past cylinders. Quart. J. Mech. Appl. Math. 10(4), 406–424 (1957)

    Article  MathSciNet  Google Scholar 

  29. Subramanian, G., Rao, C.V.R., Pramadavalli, K.: A circular cylinder in a flow field with parabolic velocity distribution—a numerical study. Comput. Math. Appl. 14, 127–132 (1981)

    Article  Google Scholar 

  30. Choudhary, K.P., Arumuru, V., Bhumkar, Y.G.: Numerical simulation of beam drift effect in ultrasonic flow-meter. Measurement 146, 705–717 (2019)

    Article  Google Scholar 

  31. Kumar, S., Ganta, N., Bhumkar, Y.G.: Effects of periodic suction-blowing excitation on the aerodynamic sound generated by a laminar flow past a square cylinder using the direct numerical simulation approach. AIP Adv. 12(5), 055324 (2022)

    Article  Google Scholar 

  32. Yadav, V.S., Ganta, N., Mahato, B., Rajpoot, M.K., Bhumkar, Y.G.: New time-marching methods for compressible Navier–Stokes equations with applications to aeroacoustics problems. Appl. Math. Comput. 419, 126863 (2022)

    MathSciNet  Google Scholar 

  33. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  Google Scholar 

  34. Hoffman, K.A., Chiang, S.T.: Computational Fluid Dynamics, vol. II, Engineering Education System (2000)

  35. Colonius, T., LELE, S., Moin, P.: Sound generation in a mixing layer. J. Fluid Mech. 330, 375–409 (1997). https://doi.org/10.1017/S0022112096003928

    Article  Google Scholar 

  36. Qu, L., Norberg, C., Davidson, L., Peng, S., Wang, F.: Quantitative analysis of flow past a circular cylinder at Reynolds number between 50 and 200. J. Fluids Struct. 39, 347–370 (2013)

    Article  Google Scholar 

  37. Posdziech, O., Grundmann, R.: Numerical simulation of the flow around an infinitely long circular cylinder in the transition regime. Theoret. Comput. Fluid Dyn. 15, 121–141 (2001)

    Article  Google Scholar 

  38. Mitchell, B.E., Lele, K.S., Moin, P.: Direct computation of the sound from a compressible co-rotating vortex pair. J. Fluid Mech. 285, 181–202 (1995)

    Article  MathSciNet  Google Scholar 

  39. Daryan, H., Hussain, F., Hickey, J.-P.: Aeroacoustic noise generation due to vortex reconnection. Phys. Rev. Fluids 5, 062702 (2020)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally.

Corresponding author

Correspondence to Shashi Kumar.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, S., Arumuru, V. et al. Analysis of non-uniform laminar flow past a circular cylinder on the flow and sound field evolution using direct numerical simulation approach. Acta Mech 235, 29–49 (2024). https://doi.org/10.1007/s00707-023-03735-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03735-8

Navigation