Skip to main content

Advertisement

Log in

Design optimization of vein-bionic textured hydrodynamic journal bearing using genetic algorithm

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Surface texturing is an efficient approach for boosting the performance of bearing. In this paper, a vein bionic texture has been applied to the surface of hydrodynamic journal bearing in order to improve its bearing performance. The bionic texture is inspired by the pattern of a peepal (ficus religiosa) leaf and optimized by a bio-inspired genetic algorithm technique. In this study, the use of bionic texture without GA optimization has been observed to increases the value of stability parameter by 13.08% and reduces the value of friction torque by 21.17%, while the use of the GA-optimized vein-bionic texture resulted in a significant improvement in bearing performance, with the stability parameter increases by up to 18.24% and friction torque being reduced by up to 46.66%. This class of surface texture improves both static and dynamic characteristics of the bearing. Further, the bifurcation diagram has been plotted to examine the system’s stability. The findings of this study should prove useful for rotor-dynamic researcher in their efforts to stabilize systems with the use of GA-optimized vein-bionic textured journal bearings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(A\) :

Area, m2

\(c\) :

Horizontal clearance, mm

\({c}_{m}\) :

Vertical clearance, mm

\({C}_{x,y}\) :

Damping coefficients, \(\frac{\mathrm{Ns}}{\mathrm{m}}\)

D :

Bearing diameter, mm

e :

Bearing eccentricity, mm

\(F\) :

Resultant reaction force at \(\left( {\frac{\partial h}{{\partial t}}} \right) \ne 0\), N

\({F}_{0}\) :

Resultant film reaction \(\left( {\frac{\partial h}{{\partial t}}} \right) = 0\)

h :

Thickness of lubricant film, mm

\({h}_{p}\) :

Dimple height, mm

\(p\) :

Pressure of air film, N/m2

\({p}_{s}\) :

Ambient pressure, N/m2

Q :

Lubricant flow rate, m3/s

\({S}_{x,z}\) :

Stiffness coefficients, \(\frac{\mathrm{Ns}}{\mathrm{m}}\)

R :

Rotor radius, mm

\({M}_{j}\) :

Rotor mass, kg

\(L\) :

Axial length of bearing, mm

\({x}_{j},{z}_{j}\) :

Coordinates of rotor center

\(X,Y,Z\) :

Rectangular journal coordinate system

\(\delta\) :

Offset ratio, \(\frac{{\mathrm{c}}_{\mathrm{m}}}{\mathrm{c}}\)

\(\mu\) :

Air viscosity, Pa-s

\(\rho\) :

Air density, \(\mathrm{kg}/{\mathrm{m}}^{3}\)

\({\omega }_{th}\) :

Threshold speed, \(\left(\mathrm{rad}\cdot {\mathrm{s}}^{-1}\right)\)

\(\lambda\) :

Aspect ratio \(\lambda =L/D\)

\(\overline{A}\) :

\(A_b /A_c\)

\(\overline{C}\) :

\(\frac{Ch_f^3 }{{r_o^4 \mu }}\)

\(\overline{h}\) :

\(h/h_r\)

\({\overline{h} }_{p}\) :

\(\left({h}_{p}\right)/{h}_{r}\)

\(\overline{Q}\) :

\(\frac{\mu }{p_s h_r^3 }Q\)

\(\overline{S}\) :

\(\frac{Sh_r }{{R_j^2 p_s }}\)

\(\alpha\) :

\(X/R_J\)

\(\beta\) :

\(Y/R_J\)

\(\overline{t}\) :

\(t/\left( {\frac{\mu \,R_j^2 }{{h_r^2 p_s }}} \right)\)

\(\varepsilon\) :

\(e/c\) Eccentricity ratio

\(\overline{M}_J ,\,\overline{M}_c\) :

\(\left( {M_c ,M_J } \right)\left( {\frac{c^2 p_s }{{\mu \,R_J^2 \omega_J }}} \right)\)

\({\overline{W} }_{o}\) :

\({W}_{o}/{p}_{s}{R}_{J}^{2}\)

\(\left({\overline{X} }_{J},{\overline{Z} }_{J}\right)\) :

\(\left({X}_{J},{Z}_{J}\right)/c\)

\({\overline{\omega }}_{th}\) :

\({\omega }_{th}/{\omega }_{I}\)

\(\Omega\) :

\({\omega }_{J}\left(\mu {R}_{J}^{2}/{c}^{2}{p}_{s}\right)\) Speed parameter

References

  1. Lund, J.: Review of the concept of dynamic coefficients for fluid film journal bearings. J. Tribol. 109, 37–41 (1987)

    Google Scholar 

  2. Koshal, D., Rowe, W.: Fluid-film journal bearings operating in a hybrid mode: part I—theoretical analysis and design. J. Tribol. 103, 558–565 (1981)

    Google Scholar 

  3. Singh, U., Roy, L., Sahu, M.: Steady-state thermo-hydrodynamic analysis of cylindrical fluid film journal bearing with an axial groove. Tribol. Int. 41(12), 1135–1144 (2008)

    Google Scholar 

  4. Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46(3), 397–403 (2003)

    Google Scholar 

  5. Etsion, I., Halperin, G., Brizmer, V., Kligerman, Y.: Experimental investigation of laser surface textured parallel thrust bearings. Tribol. Lett. 17(2), 295–300 (2004)

    Google Scholar 

  6. Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127(1), 248–253 (2005)

    Google Scholar 

  7. Long, R., Zhao, C., Zhang, Y., Wang, Y., Wang, Y.: Effect of vein-bionic surface textures on the tribological behavior of cylindrical roller thrust bearing under starved lubrication. Sci. Rep. 11(1), 21238 (2021)

    Google Scholar 

  8. Lu, Y., Hua, M., Liu, Z.: The biomimetic shark skin optimization design method for improving lubrication effect of engineering surface. J. Tribol. 136(3), 031703 (2014)

    Google Scholar 

  9. Atwal, J., Pandey, R.: Performance analysis of thrust pad bearing using micro-rectangular pocket and bionic texture. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 235(6), 1232–1250 (2021)

    Google Scholar 

  10. Wu, L., Jiao, Z., Song, Y., Liu, C., Wang, H., Yan, Y.: Experimental investigations on drag-reduction characteristics of bionic surface with water-trapping microstructures of fish scales. Sci. Rep. 8(1), 12186 (2018)

    Google Scholar 

  11. Vidyasagar, K., Pandey, R., Kalyanasundaram, D.: Improvement of deep Groove Ball bearing’s performance using a bionic textured inner race. J. Bionic Eng. 18(4), 974–990 (2021)

    Google Scholar 

  12. Wang, Z., Fu, Q., Wood, R.J., Wu, J., Wang, S.: Influence of bionic non-smooth surface texture on tribological characteristics of carbon-fiber-reinforced polyetheretherketone under seawater lubrication. Tribol. Int. 144, 106100 (2020)

    Google Scholar 

  13. Pattnayak, M.R., Pandey, R.K., Dutt, J.K.: Performance improvement of an oil-lubricated journal bearing using bionic-textures fused micro-pockets. J. Tribol. 144(4), 041804 (2022)

    Google Scholar 

  14. Homaifar, A., Qi, C.X., Lai, S.H.: Constrained optimization via genetic algorithms. SIMULATION 62(4), 242–253 (1994)

    Google Scholar 

  15. Lin, Y.J., Noah, S.T.: Using genetic algorithms for the optimal design of fluid journal bearing. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers. (1999)

  16. Golberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addion. Wesley. 1989(102), 36 (1989)

    Google Scholar 

  17. Boedo, S., Eshkabilov, S.: Optimal shape design of steadily loaded journal bearings using genetic algorithms. Tribol. Trans. 46(1), 134–143 (2003)

    Google Scholar 

  18. Saruhan, H., Rouch, K.E., Roso, C.A.: Design optimization of tilting-pad journal bearing using a genetic algorithm. Int. J. Rotat. Mach. 10(4), 301–307 (2004)

    Google Scholar 

  19. Yang, B., Choi, S., Kim, Y.: Vibration reduction optimum design of a steam-turbine rotor-bearing system using a hybrid genetic algorithm. Struct. Multidiscip. Optim. 30(1), 43–53 (2005)

    Google Scholar 

  20. Roy, L., Kakoty, S.: Groove location for optimum performance of three-and four-lobe bearings using genetic algorithm. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229(1), 47–63 (2015)

    Google Scholar 

  21. Zhang, H., Hafezi M., Dong, G., Liu, Y.: A design of coverage area for textured surface of sliding journal bearing based on genetic algorithm. J. Tribol. 140(6), 061702 (2018)

    Google Scholar 

  22. Hirani, H., Suh, N.: Journal bearing design using multiobjective genetic algorithm and axiomatic design approaches. Tribol. Int. 38(5), 481–491 (2005)

    Google Scholar 

  23. Sharma, S., Jamwal, G., Awasthi, R.K.: Dynamic and stability performance improvement of the hydrodynamic bearing by using triangular-shaped textures. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 234(9), 1436–1451 (2020)

    Google Scholar 

  24. Yadav, S.K., Thakre, G.D., Khatri, C.B.: Khatri, Improvement in textured hole-entry hybrid journal bearing system by using multi-objective genetic algorithm. J. Braz. Soc. Mech. Sci. Eng. 44(1), 32 (2021)

    Google Scholar 

  25. Meng, F., Zhang, Y., Su, L., Yu, H., Zheng, Y.: Dynamic characteristics of compound textured journal bearing. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 235(7), 1312–1334 (2021)

    Google Scholar 

  26. Yadav, S.K., Sharma, S.C.: Performance of hydrostatic textured thrust bearing with supply holes operating with non-newtonian lubricant. Tribol. Trans. 59(3), 1–43 (2015)

    Google Scholar 

  27. Kumar, V., Sharma, S.C.: Dynamic characteristics of compensated hydrostatic thrust pad bearing subjected to external transverse magnetic field. Acta Mech. 229(3), 1251–1274 (2018)

    MathSciNet  Google Scholar 

  28. Sinhasan, R., Sah, P.: Static and dynamic performance characteristics of an orifice compensated hydrostatic journal bearing with non-Newtonian lubricants. Tribol. Int. 29(6), 515–526 (1996)

    Google Scholar 

  29. Long, R., Zhao, C., Zhang, Y., Wang, Y., Wang, Y.: Effect of vein-bionic surface textures on the tribological behavior of cylindrical roller thrust bearing under starved lubrication. Sci. Rep. 11(1), 1–7 (2021)

    Google Scholar 

  30. Khatri, C.B., Sharma, S.C.: Influence of textured surface on the performance of non-recessed hybrid journal bearing operating with non-Newtonian lubricant. Tribol. Int. 95, 221–235 (2016)

    Google Scholar 

  31. Zhang, J., Lu, L., Zheng, Z., Tong, H., Huang, X.: Experimental verification: a multi-objective optimization method for inversion technology of hydrodynamic journal bearings. Struct. Multidiscip. Optim. 66(1), 1–17 (2023)

    Google Scholar 

  32. Sharma, S.C., Khatri, C.B.: Electro-rheological fluid lubricated textured multi-lobe hole-entry hybrid journal bearing system. J. Intell. Mater. Syst. Struct. 29(8), 1600–1619 (2018)

    Google Scholar 

  33. Feng, H., Jiang, S., Ji, A.: Investigations of the static and dynamic characteristics of water-lubricated hydrodynamic journal bearing considering turbulent, thermohydrodynamic and misaligned effects. Tribol. Int. 130, 245–260 (2019)

    Google Scholar 

  34. Bujurke, N., Naduvinamani, N.: On the performance of narrow porous journal bearing lubricated with couple stress fluid. Acta Mech. 86(1–4), 179–191 (1991)

    Google Scholar 

  35. Khatri, C.B., Sharma, S.C.: Influence of couple stress lubricant on the performance of textured two-lobe slot-entry hybrid journal bearing system. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 231(3), 366–384 (2017)

    Google Scholar 

  36. Khatri, C.B., Sharma, S.C.: Analysis of textured multi-lobe non-recessed hybrid journal bearings with various restrictors. Int. J. Mech. Sci. 145, 258–286 (2018)

    Google Scholar 

  37. Rajput, A.K., Yadav, S.K., Sharma, S.C.: Effect of geometrical irregularities on the performance of a misaligned hybrid journal bearing compensated with membrane restrictor. Tribol. Int. 115, 619–627 (2017)

    Google Scholar 

  38. Khonsari, M.: On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. Acta Mech. 81(3–4), 235–244 (1990)

    Google Scholar 

  39. Sadegh, H., Mehdi, A.N., Mehdi, A.: Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm. Tribol. Int. 95, 426–434 (2016)

    Google Scholar 

  40. Qiu, Y., Khonsari, M.: On the prediction of cavitation in dimples using a mass-conservative algorithm. J. Tribol. 131(4), 1–11 (2009)

    Google Scholar 

  41. Safar, Z., Elkotb, M., Mokhtar, D.: Analysis of misaligned journal bearings operating in turbulent regime. J. Tribol. 111, 215–219 (1989)

    Google Scholar 

  42. Pawlus, P., Reizer, R., Wieczorowski, M.: Functional importance of surface texture parameters. Materials. 14(18), 5326 (2021)

    Google Scholar 

  43. Wang, C.C.: Nonlinear dynamic behavior and bifurcation analysis of a rigid rotor supported by a relatively short externally pressurized porous gas journal bearing system. Acta Mech. 183(1–2), 41–60 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology, Government of India, through the TARE GRANT (No. TAR/2019/000077) at the Institute of Infrastructure, Technology, Research and Management (IITRAM) in Ahmedabad. The authors would like to express their gratitude for this funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra B. Khatri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, C.B., Yadav, S.K., Thakre, G.D. et al. Design optimization of vein-bionic textured hydrodynamic journal bearing using genetic algorithm. Acta Mech 235, 167–190 (2024). https://doi.org/10.1007/s00707-023-03734-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03734-9

Navigation