Skip to main content
Log in

A study on stochastic aeroelastic stability and flutter reliability of a wing

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, the stochastic aeroelastic stability and flutter reliability of a wing are investigated using the stochastic finite element method in conjunction with the first order reliability method (FORM). Three stability conditions are proposed for estimating flutter onset in aeroelastic systems in the presence of uncertainties. Here, stability conditions are represented as limit state functions and defined in conditional sense on flow velocity for flutter reliability studies. Due to various representation of limit states, a lack of invariance in reliability estimates is observed using the conventional flutter reliability approach such as the first order second moment method. In this paper, a general FORM is proposed, which is suitable for all the limit state functions considered and shows invariance in reliability estimates. The proposed approach is applied to a wing having uncertain stiffness parameters, modeled by either random variables or random fields. Random fields are represented by a Karhunen–Loeve expansion, and the effect of correlation length on the flutter reliability of the wing is discussed. The computational efficiency of the FORM algorithm for various limit states in comparison of MCS is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Wright, J.R., Cooper, J.E.: Introduction to Aircraft Aeroelasticity and Loads, 2nd edn. Wiley, Chichester (2015)

    Google Scholar 

  2. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover Publications Inc, New York (2008)

    MATH  Google Scholar 

  3. Pitt, D.M., Haudrich, D.P., Thomas, M.J., Griffin, K.E.: Probabilistic aeroelastic analysis and its implications on flutter margin requirements. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Schaumburg, Illinois, USA, April 7–10 (2008). https://doi.org/10.2514/6.2008-2198

  4. Swain, P.K., Sharma, N., Maiti, D.K., Singh, B.N.: Aeroelastic analysis of laminated composite plate with material uncertainty. J. Aerosp. Eng. 33(1), 04019111 (2020). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001107

    Article  Google Scholar 

  5. Choi, S.K., Grandhi, R., Canfield, R.A.: Reliability-Based Structural Design. Springer, London (2006)

    MATH  Google Scholar 

  6. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Dover Publications Inc, New York (2003)

    MATH  Google Scholar 

  7. Kleiber, M., Hien, T.D.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, Chichester (1992)

    MATH  Google Scholar 

  8. Lindsley, N.J., Beran, P.S., Pettit, C.L.: Effects of uncertainty on nonlinear plate response in supersonic flow. In: 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Atlanta, Georgia, USA, Sept 04–06 (2002). https://doi.org/10.2514/6.2002-5600

  9. Pettit, C.L.: Uncertainty quantification in aeroelasticity: recent results and research challenges. J. Aircr. 41(5), 1217–1229 (2004). https://doi.org/10.2514/1.3961

    Article  Google Scholar 

  10. Castravete, S.C., Ibrahim, R.A.: Effect of stiffness uncertainties on the flutter of a cantilever wing. AIAA J. 46(4), 925–935 (2008). https://doi.org/10.2514/1.31692

    Article  Google Scholar 

  11. Danowsky, B.P., Chrstos, J.R., Klyde, D.H., Farhat, C., Brenner, M.: Application of multiple methods for aeroelastic uncertainty analysis. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, USA, Aug 18–21 (2008). https://doi.org/10.2514/6.2008-6371

  12. Verhoosel, C.V., Scholcz, T.P., Hulshoff, S.J., Gutiérrez, M.A.: Uncertainty and reliability analysis of fluid-structure stability boundaries. AIAA J. 47(1), 91–104 (2009). https://doi.org/10.2514/1.35770

    Article  Google Scholar 

  13. Anton, C., Deng, J., Wong, Y.S.: Hopf bifurcation analysis of an aeroelastic model using stochastic normal form. J. Sound Vib. 331(16), 3866–3886 (2012). https://doi.org/10.1016/j.jsv.2012.03.031

    Article  Google Scholar 

  14. Adamson, L.J., Fichera, S., Mottershead, J.E.: Aeroelastic stability analysis using stochastic structural modifications. J. Sound Vib. 477, 115333 (2020). https://doi.org/10.1016/j.jsv.2020.115333

    Article  Google Scholar 

  15. Onkar, A.K.: A successive robust flutter prediction technique for aeroelastic systems using \(\mu \) method. Meccanica 56, 2613–2629 (2021). https://doi.org/10.1007/s11012-021-01390-8

    Article  MathSciNet  Google Scholar 

  16. Beran, P., Stanford, B., Schrock, C.: Uncertainty quantification in aeroelasticity. Annu. Rev. Fluid Mech. 49, 361–386 (2017). https://doi.org/10.1146/annurev-fluid-122414-034441

    Article  MathSciNet  MATH  Google Scholar 

  17. Irwin, C.A.K., Guyett, P.R.: The Subcritical Response and Flutter of a Swept-Wing Model. HM Stationery Office, London (1965)

    Google Scholar 

  18. Ge, Y.J., Xiang, H.F., Tanaka, H.: Application of a reliability analysis model to bridge flutter under extreme winds. J. Wind Eng. Ind. Aerodyn. 86(2–3), 155–167 (2000). https://doi.org/10.1016/S0167-6105(00)00008-8

    Article  Google Scholar 

  19. Zhang, T., Cui, X., Zhang, X., Li, H., Zou, Y.: Flutter reliability analysis of Xiangshan harbor highway cable-stayed bridges in service. Appl. Sci. (Switz.) (2012). https://doi.org/10.3390/app12168301

    Article  Google Scholar 

  20. Cheng, J., Cai, C.S., Xiao, R.C., Chen, S.R.: Flutter reliability analysis of suspension bridges. J. Wind Eng. Ind. Aerodyn. 93(10), 757–775 (2005). https://doi.org/10.1016/j.jweia.2005.08.003

    Article  Google Scholar 

  21. Liaw, D., Yang, H.: Reliability of uncertain laminated shells due to buckling and supersonic flutter. AIAA J. 29(10), 1698–1708 (1991). https://doi.org/10.2514/3.10793

    Article  MATH  Google Scholar 

  22. Liaw, D., Yang, H.: Reliability and nonlinear supersonic flutter of uncertain laminated plates. AIAA J. 31(12), 2304–2311 (1993). https://doi.org/10.2514/3.11929

    Article  MATH  Google Scholar 

  23. Shufang, S., Zhenzhou, L., Weiwei, Z., Zhengyin, Y.: Reliability and sensitivity analysis of transonic flutter using improved line sampling technique. Chin. J. Aeronaut. 22(5), 513–519 (2009). https://doi.org/10.1016/S1000-9361(08)60134-X

    Article  Google Scholar 

  24. Borello, F., Cestino, E., Frulla, G.: Structural uncertainty effect on classical wing flutter characteristics. J. Aerosp. Eng. 23(4), 327–338 (2010). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000049

    Article  Google Scholar 

  25. Wu, S., Livne, E.: Alternative unsteady aerodynamic uncertainty modeling approaches for aeroservoelastic reliability analysis. In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, California, USA, 4–8 January (2016)

  26. Pourazarm, P., Caracoglia, L., Lackner, M., Modarres-Sadeghi, Y.: Perturbation methods for the reliability analysis of wind-turbine blade failure due to flutter. J. Wind Eng. Ind. Aerodyn. 156, 159–171 (2016). https://doi.org/10.1016/j.jweia.2016.07.011

    Article  Google Scholar 

  27. Wang, X., Qiu, Z.: Nonprobabilistic interval reliability analysis of wing flutter. AIAA J. 47(3), 743–748 (2009). https://doi.org/10.2514/1.39880

    Article  Google Scholar 

  28. Zheng, Y., Qiu, Z.: An efficient method for flutter stability analysis of aeroelastic systems considering uncertainties in aerodynamic and structural parameters. Mech. Syst. Signal Process. 126, 407–426 (2019). https://doi.org/10.1016/j.ymssp.2019.02.038

    Article  Google Scholar 

  29. Rezaei, M., Fazelzadeh, S.A., Mazidi, A., Friswell, M.I., Khodaparast, H.H.: Fuzzy uncertainty analysis and reliability assessment of aeroelastic aircraft wings. Aeronaut. J. 124(1275), 786–811 (2020). https://doi.org/10.1017/aer.2020.2

    Article  Google Scholar 

  30. Goland, M.: The flutter of a uniform cantilever wing. J. Appl. Mech. Trans. ASME 12(4), A197–A208 (1945). https://doi.org/10.1115/1.4009489

    Article  Google Scholar 

  31. Bisplinghoff, R.L., Ashley, H.: Principles of Aeroelasticity. Dover Publicaltions Inc., New York (1962)

    MATH  Google Scholar 

  32. Afolabi, D., Pidaparti, R.M.V., Yang, H.T.Y.: Flutter prediction using an eigenvector orientation approach. AIAA J. 36(1), 69–74 (1998). https://doi.org/10.2514/2.353

    Article  MATH  Google Scholar 

  33. Hwang, H.H., Tripathi, P.C.: Generalisation of the Routh–Hurwitz criterion and its applications. Electron. Lett. 6(13), 410–411 (1970). https://doi.org/10.1049/el:19700287

    Article  Google Scholar 

  34. Katsuhiko, O.: Modern Control Engineering, 5th edn. Pearson Education, Inc, London (2010)

    MATH  Google Scholar 

  35. Zimmerman, N.H., Weissenburger, J.T.: Prediction of flutter onset speed based on flight testing at subcritical speeds. J. Aircr. 1(4), 190–202 (1964). https://doi.org/10.2514/3.43581

    Article  Google Scholar 

  36. Scarth, C., Cooper, J.E.: Reliability-based aeroelastic design of composite plate wings using a stability margin. Struct. Multidiscip. Optim. 57, 1695–1709 (2018). https://doi.org/10.1007/s00158-017-1838-6

    Article  Google Scholar 

  37. Hassig, H.J.: An approximate true damping solution of the flutter equation by determinant iteration. J. Aircr. 8(11), 885–889 (1971). https://doi.org/10.2514/3.44311

    Article  Google Scholar 

  38. Chen, P.C.: Damping perturbation method for flutter solution: the g-method. AIAA J. 38(9), 1519–1524 (2000). https://doi.org/10.2514/2.1171

    Article  Google Scholar 

  39. Kumar, S., Onkar, A.K., Manjuprasad, M.: Frequency domain approach for probabilistic flutter analysis using stochastic finite elements. Meccanica 54, 2207–2225 (2019). https://doi.org/10.1007/s11012-019-01061-9

    Article  MathSciNet  Google Scholar 

  40. Kumar, S., Onkar, A.K., Manjuprasad, M.: Probabilistic flutter analysis of a cantilever wing. In: Dutta, S., Inan, E., Dwivedy, S.K. (eds.) Advances in Structural Vibration, pp. 133–147. Springer, Singapore (2021)

    Chapter  Google Scholar 

  41. Theodorsen, T.: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Technical Report. No. 496 (1935)

  42. Kumar, S., Onkar, A.K., Manjuprasad, M.: Stochastic modeling and reliability analysis of wing flutter. J. Aerosp. Eng. 33(5), 04020044 (2020). https://doi.org/10.1061/(ASCE)AS.1943-5525.0001153

    Article  Google Scholar 

  43. Haldar, A., Mahadevan, S.: Reliability Assessment Using Stochastic Finite Element Analysis. Wiley, New York (2000)

    Google Scholar 

  44. Nelson, R.B.: Simplified calculation of eigenvector derivatives. AIAA J. 14(9), 1201–1205 (1976). https://doi.org/10.2514/3.7211

    Article  MathSciNet  MATH  Google Scholar 

  45. Adhikari, S., Friswell, M.I.: Eigenderivative analysis of asymmetric non-conservative systems. Int. J. Numer. Methods Eng. 51(6), 709–733 (2001). https://doi.org/10.1002/nme.186.abs

    Article  MATH  Google Scholar 

  46. Huang, S.P., Quek, S.T., Phoon, K.K.: Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int. J. Numer. Methods Eng. 52(9), 1029–1043 (2001). https://doi.org/10.1002/nme.255

    Article  MATH  Google Scholar 

  47. Van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory. Wiley, New York (2004)

    MATH  Google Scholar 

  48. Nowak, A.S., Collins, K.R.: Reliability of Structures. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  49. Canor, T., Caracoglia, L., Denoël, V.: Application of random eigenvalue analysis to assess bridge flutter probability. J. Wind Eng. Ind. Aerodyn. 140, 79–86 (2015). https://doi.org/10.1016/j.jweia.2015.02.001

    Article  Google Scholar 

  50. Melchers, R.E.: Structural Reliability Analysis and Prediction, 2nd edn. Wiley, Chichester (1999)

    Google Scholar 

  51. Ang, A.H.S., Tang, W.H.: Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering. Wiley, New York (2006)

    Google Scholar 

  52. Haldar, A., Mahadevan, S.: Probability, Reliability, and Statistical Methods in Engineering Design. Wiley, New York (2000)

    Google Scholar 

  53. Rackwitz, R., Fiessler, B.: Structural reliability under combined random load sequences. Comput. Struct. 9(5), 489–494 (1978). https://doi.org/10.1016/0045-7949(78)90046-9

    Article  MATH  Google Scholar 

  54. Rackwitz, R., Fiessler, B: Note on Discrete Safety Checking When using Non-Normal Stochastic Models for Basic Variables. Load Project Working Session, MIT Cambridge (1976)

  55. Irani, S., Sazesh, S.: A new flutter speed analysis method using stochastic approach. J. Fluids Struct. 40, 105–114 (2013). https://doi.org/10.1016/j.jfluidstructs.2013.03.018

    Article  Google Scholar 

  56. Bulmer, M.G.: Principles of Statistics. The MIT Press, Cambridge (1967)

    MATH  Google Scholar 

  57. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962). https://doi.org/10.1214/aoms/1177704472

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Onkar.

Ethics declarations

Conflict of interest

The authors declare that they have no personal and financial relationship with people or organization that could affect the research work reported in the current article.

Author contributions

SK: Conceptualization, Methodology, Formal analysis, Visualization, Validation, Writing—original draft and editing. AKO: Investigation, Writing—review and editing, Supervision, Resourses. MM: Writing—review and editing, Supervision, Resources.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Onkar, A.K. & Manjuprasad, M. A study on stochastic aeroelastic stability and flutter reliability of a wing. Acta Mech 234, 6649–6675 (2023). https://doi.org/10.1007/s00707-023-03727-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03727-8

Navigation