Skip to main content
Log in

Resonance analysis of vibration isolation system with quasi-zero stiffness and quadratic damping under base excitation

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The transmissibility of the forced resonance for the nonlinear vibration isolation system (VIS) coupled with quasi-zero stiffness (QZS) and quadratic damping under base excitation are investigated. By utilizing the averaging method, the approximate analytical solutions of primary resonance (PR) and 1/3 subharmonic resonance (SR) for the nonlinear vibration isolator with QZS and quadratic damping are acquired. Employing Lyapunov's first method, the stability conditions of steady-state solutions for the nonlinear VIS with QZS and quadratic damping are determined. According to the derived conditions for the existence of subharmonic resonance, it is proved that when the considered nonlinear VIS has subharmonic resonance, it only exists within a certain excitation frequency range. The accuracy of the approximate analytical solutions for the amplitude-frequency response, force transmissibility, and relative displacement transmissibility of the PR and SR of the nonlinear VIS is confirmed by comparing them with the numerical results. The effects of QZS and quadratic damping on transmissibility of both force and relative displacement of nonlinear VIS have been discussed. The analysis results indicate that by choosing the appropriate QZS parameter or quadratic damping coefficient, the subharmonic resonance of the nonlinear VIS under a certain base excitation can be completely eliminated. When the amplitude of the base excitation increases to the extent that the system exhibits significant resonance behavior, for the same coefficient value, the nonlinear VIS coupled with QZS and quadratic damping can achieve smaller initial vibration isolation frequency and better amplitude suppression effect than that with linear damping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, J., Xiong, Y.P., Xing, J.T.: Dynamics and power flow behaviour of a nonlinear vibration isolation system with a negative stiffness mechanism. J. Sound Vib. 332(1), 167–183 (2013)

    Google Scholar 

  2. Lu, Z.Q., Gu, D.H., Ding, H., Lacarbonara, W., Chen, L.Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)

    Google Scholar 

  3. Ding, H., Lu, Z.Q., Chen, L.Q.: Nonlinear isolation of transverse vibration of pre-pressure beams. J. Sound Vib. 442, 738–751 (2019)

    Google Scholar 

  4. Smirnov, V., Mondrus, V.: Comparison of linear and nonlinear vibration isolation system under random excitation. Procedia Eng. 153, 673–678 (2016)

    Google Scholar 

  5. Yang, T., Cao, Q., Hao, Z.: A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mech. Syst. Signal Process. 155, 107636 (2021)

    Google Scholar 

  6. Niu, M.Q., Chen, L.Q.: Nonlinear vibration isolation via a compliant mechanism and wire ropes. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06588-9

    Article  Google Scholar 

  7. Santhosh, B.: Dynamics and performance evaluation of an asymmetric nonlinear vibration isolation mechanism. J. Braz. Soc. Mech. Sci. Eng. 40, 169 (2018)

    Google Scholar 

  8. Ibrahim, R.A.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3–5), 371–452 (2008)

    Google Scholar 

  9. Lu, Z.Q., Chen, L.Q.: Some recent progresses in nonlinear passive isolations of vibrations. Chin. J. Theor. Appl. Mech. 49(3), 550–564 (2017)

    Google Scholar 

  10. Ji, J.C., Luo, Q., Ye, K.: Vibration control based metamaterials and origami structures: a state-of-the-art review. Mech. Syst. Signal Process. 161, 107945 (2021)

    Google Scholar 

  11. Jing, X.: The X-structure/mechanism approach to beneficial nonlinear design in engineering. Appl. Math. Mech. (English Edition) 43(7), 979–1000 (2022)

    Google Scholar 

  12. Carrella, A., Brennan, M.J., Waters, T.P.: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. J. Sound Vib. 301(3–5), 678–689 (2007)

    Google Scholar 

  13. Carrella, A., Brennan, M.J., Kovacic, I., Waters, T.P.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4–5), 707–717 (2009)

    Google Scholar 

  14. Zhou, X., Sun, X., Zhao, D., Yang, X., Tang, K.: The design and analysis of a novel passive quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 9, 225–245 (2021)

    Google Scholar 

  15. Wen, G., He, J., Liu, J., Lin, Y.: Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs. Nonlinear Dyn. 106, 309–321 (2021)

    Google Scholar 

  16. Shaw, A.D., Gatti, G., Gonçalves, P.J.P., Tang, B., Brennan, M.J.: Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mech. Syst. Signal Process. 152, 107354 (2021)

    Google Scholar 

  17. Wang, K., Zhou, J., Chang, Y., Ouyang, H., Xu, D., Yang, Y.: A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dyn. 101, 755–773 (2020)

    Google Scholar 

  18. Suman, S., Balaji, P.S., Selvakumar, K., Kumaraswamidhas, L.A.: Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism. J. Vib. Eng. Technol. 9, 957–966 (2021)

    Google Scholar 

  19. Chen, T., Zheng, Y., Song, L., Gao, X., Li, Z.: Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dyn. 111, 5141–5163 (2023)

    Google Scholar 

  20. Zhao, F., Ji, J., Ye, K., Luo, Q.: An innovative quasi-zero stiffness isolator with three pairs of oblique springs. Int. J. Mech. Sci. 192, 106093 (2021)

    Google Scholar 

  21. Robertson, W.S., Kidner, M.R.F., Cazzolato, B.S., Zander, A.C.: Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. J. Sound Vib. 326(1–2), 88–103 (2009)

    Google Scholar 

  22. Zheng, Y., Zhang, X., Luo, Y., Yan, B., Ma, C.: Design and experiment of a high-static–low-dynamic stiffness isolator using a negative stiffness magnetic spring. J. Sound Vib. 360, 31–52 (2016)

    Google Scholar 

  23. Yuan, J., Jin, G., Ye, T., Chen, Y., Bai, J.: Theoretical modeling and analysis of a quasi-zero-stiffness vibration isolator equipped with extensible and axially magnetized negative stiffness modules. J. Vib. Control (2023). https://doi.org/10.1177/10775463221140437

    Article  Google Scholar 

  24. Yuan, S., Sun, Y., Zhao, J., Meng, K., Wang, M., Pu, H., Peng, Y., Luo, J., Xie, S.: A tunable quasi-zero stiffness isolator based on a linear electromagnetic spring. J. Sound Vib. 482, 115449 (2020)

    Google Scholar 

  25. Wang, M., Su, P., Liu, S., Chai, K., Wang, B., Lu, J.: Design and analysis of electromagnetic quasi-zero stiffness vibration isolator. J. Vib. Eng. Technol. 11, 153–164 (2023)

    Google Scholar 

  26. Ma, Z., Zhou, R., Yang, Q., Lee, H.P., Chai, K.: A semi-active electromagnetic quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 252, 108357 (2023)

    Google Scholar 

  27. An, J., Chen, G., Deng, X., Xi, C., Wang, T., He, H.: Analytical study of a pneumatic quasi-zero-stiffness isolator with mistuned mass. Nonlinear Dyn 108, 3297–3312 (2022)

    Google Scholar 

  28. Xu, X., Liu, H., Jiang, X., et al.: Uncertainty analysis and optimization of quasi-zero stiffness air suspension based on polynomial chaos method. Chin. J. Mech. Eng. 35, 93 (2022)

    Google Scholar 

  29. Wang, Q., Zhou, J., Wang, K., Xu, D., Wen, G.: Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs. Sci. China Technol. Sci. 64, 2255–2271 (2021)

    Google Scholar 

  30. Jiang, Y., Song, C., Ding, C., Xu, B.: Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. J. Sound Vib. 477, 115346 (2020)

    Google Scholar 

  31. Zhang, Z., Zhang, Y.W., Ding, H.: Vibration control combining nonlinear isolation and nonlinear absorption. Nonlinear Dyn. 100, 2121–2139 (2020)

    Google Scholar 

  32. Liu, Y., Ji, W., Xu, L., Gu, H., Song, C.: Dynamic characteristics of quasi-zero stiffness vibration isolation system for coupled dynamic vibration absorber. Arch Appl Mech 91, 3799–3818 (2021)

    Google Scholar 

  33. Zeng, Y., Ding, H., Du, R.H., Chen, L.Q.: A suspension system with quasi-zero stiffness characteristics and inerter nonlinear energy sink. J. Vib. Control 28(1–2), 143–158 (2022)

    MathSciNet  Google Scholar 

  34. Yan, B., Yu, N., Wu, C.: A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech.-Engl. Ed. 43, 1045–1062 (2022)

    MATH  Google Scholar 

  35. Ma, H., Yan, B.: Nonlinear damping and mass effects of electromagnetic shunt damping for enhanced nonlinear vibration isolation. Mech. Syst. Signal Process. 146, 107010 (2021)

    Google Scholar 

  36. Huang, D., Xu, W., Xie, W., Liu, Y.: Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces. Nonlinear Dyn. 81, 641–658 (2015)

    Google Scholar 

  37. Ho, C., Lang, Z.Q., Billings, S.A.: Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities. J. Sound Vib. 333(12), 2489–2504 (2014)

    Google Scholar 

  38. Dong, G., Zhang, Y., Luo, Y., Xie, S., Zhang, X.: Enhanced isolation performance of a high-static–low-dynamic stiffness isolator with geometric nonlinear damping. Nonlinear Dyn. 93, 2339–2356 (2018)

    Google Scholar 

  39. Gao, X., Teng, H.D.: Dynamics and isolation properties for a pneumatic near-zero frequency vibration isolator with nonlinear stiffness and damping. Nonlinear Dyn. 102, 2205–2227 (2020)

    Google Scholar 

  40. Lv, Q., Yao, Z.: Analysis of the effects of nonlinear viscous damping on vibration isolator. Nonlinear Dyn. 79, 2325–2332 (2015)

    MathSciNet  Google Scholar 

  41. Cheng, C., Li, S., Wang, Y., Jiang, X.: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping. Nonlinear Dyn. 87, 2267–2279 (2017)

    Google Scholar 

  42. Liu, Y., Xu, L., Song, C., Gu, H., Ji, W.: Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Arch. Appl. Mech. 89, 1743–1759 (2019)

    Google Scholar 

  43. Peng, Z.K., Meng, G., Lang, Z.Q., Zhang, W.M., Chu, F.L.: Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method. Int. J. Non-Linear Mech. 47(10), 1073–1080 (2012)

    Google Scholar 

  44. Lu, Z., Brennan, M., Ding, H., Chen, L.: High-static-low-dynamic-stiffness vibration isolation enhanced by damping nonlinearity. Sci. China Technol. Sci. 62, 1103–1110 (2019)

    Google Scholar 

  45. Liu, C., Yu, K.: Superharmonic resonance of the quasi-zero-stiffness vibration isolator and its effect on the isolation performance. Nonlinear Dyn. 100, 95–117 (2020)

    Google Scholar 

  46. Wang, R.: Random vibrations of nonlinearly damped locomotive and rolling stock. J. Southwest Jiaotong Univ. 03, 101–112 (1985)

    Google Scholar 

  47. Fay, T.H.: Quadratic damping. Int. J. Math. Educ. Sci. Technol. 43(6), 789–803 (2012)

    MathSciNet  MATH  Google Scholar 

  48. Guan, J., Zuo, J., Zhao, W., Gomi, N., Zhao, X.: Study on hydraulic dampers using a foldable inverted spiral origami structure. Vibration 5, 711–731 (2022)

    Google Scholar 

  49. Niu, J., Zhang, W., Shen, Y., Wang, J.: Subharmonic resonance of quasi-zero-stiffness vibration isolation system with dry friction damper. Chin. J. Theor. Appl. Mech. 55(4), 1092–1101 (2022)

    Google Scholar 

  50. Pierre, C., Ferri, A.A., Dowell, E.H.: Multi-harmonic analysis of dry friction damped systems using an incremental harmonic balance method. J. Appl. Mech. 52(4), 958–964 (1985)

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12272241, 12202286) and Natural Science Foundation of Hebei Province (Grant No. A2021210012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangchuan Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, J., Zhang, W. & Zhang, X. Resonance analysis of vibration isolation system with quasi-zero stiffness and quadratic damping under base excitation. Acta Mech 234, 6377–6394 (2023). https://doi.org/10.1007/s00707-023-03714-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03714-z

Navigation