Skip to main content
Log in

Antiplane problems of saturated ferromagnetoelastic solids

  • Note
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We study antiplane problems of saturated ferromagnetoelastic solids. Tiersten’s equations for saturated ferromagnetoelastic insulators under biasing fields are used. For antiplane problems of cubic crystals, coordinate-independent equations for the divergence and curl of the incremental magnetization vector are derived. Trigonometric series solutions for a rectangular body under a static and local mechanical load and the free vibration frequencies and modes of a rectangular body are obtained. The interactions between mechanical and magnetic fields are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data that supports the findings of this study are available within the article.

References

  1. Prabhakar, A., Stancil, D.D.: Spin waves theory and applications. Springer, New York (2009)

    Google Scholar 

  2. Tiersten, H.F.: Coupled magnetomechanical equation for magnetically saturated insulators. J. Math. Phys. 5, 1298–1318 (1964)

    Article  MathSciNet  Google Scholar 

  3. Tiersten, H.F.: Variational principle for saturated magnetoelastic insulators. J. Math. Phys. 6, 779–787 (1965)

    Article  MathSciNet  Google Scholar 

  4. Tiersten, H.F., Tsai, C.F.: On the interaction of the electromagnetic field with heat conducting deformable insulators. J. Math. Phys. 13, 361–378 (1972)

    Article  Google Scholar 

  5. Brown, W.F.: Theory of magnetoelastic effects in ferromagnetism. J. Appl. Phys. 36, 994–1000 (1965)

    Article  Google Scholar 

  6. Brown, W.F.: Magnetoelastic interactions. Springer, New York (1966)

    Book  Google Scholar 

  7. Maugin, G.A., Eringen, A.C.: Deformable magnetically saturated media. I. Field equations. J. Math. Phys. 13, 143–155 (1972)

    Article  Google Scholar 

  8. Maugin, G.A., Eringen, A.C.: Deformable magnetically saturated media. II. Constitutive theory. J. Math. Phys. 13, 1334–1347 (1972)

    Article  Google Scholar 

  9. Tiersten, H.F.: Thickness vibrations of saturated magnetoelastic plates. J. Appl. Phys. 36, 2250–2259 (1965)

    Article  Google Scholar 

  10. Kobayashi, T., Barker, R.C., Bleustein, J.L., Yelon, A.: Ferromagnetoelastic resonance in thin films. I. Formal treatment. Phys. Rev. B. 7, 3273–3285 (1973)

    Article  Google Scholar 

  11. Kobayashi, T., Barker, R.C., Bleustein, J.L., Yelon, A.: Ferromagnetoelastic resonance in thin films. II. Applications to nickel. Phys. Rev. B 7, 3286–3297 (1973)

    Article  Google Scholar 

  12. Dewar, G., Alexandrakis, G.C.: Phonon excitation and propagation in thick iron films. J. Appl. Phys. 53, 8116–8118 (1982)

    Article  Google Scholar 

  13. Gareeva, Z.V., Doroshenko, R.A.: Thickness-shear modes and magnetoelastic waves in a longitudinally magnetized plate. J. Magn. Magn. Mater. 320, 2249–2252 (2008)

    Article  Google Scholar 

  14. Momenzadeh, S.A., de Oliveira, F.F., Neumann, P., Bhaktavatsala Rao, D.D., Denisenko, A., Amjadi, M., Chu, Z., Yang, S., Manson, N.B., Doherty, M.W., Wrachtrup, J.: Thin circular diamond membrane with embedded nitrogen-vacancy centers for hybrid spin-mechanical quantum systems. Phys. Rev. Appl. 6, 024026 (2016)

    Article  Google Scholar 

  15. Gareeva, Z.V., Doroshenko, R.A.: Dimensional resonances of elastic and magnetoelastic vibrations in two layered structure. J. Magn. Magn. Mater. 303, 221–226 (2006)

    Article  Google Scholar 

  16. Gareeva, Z.V., Doroshenko, R.A., Seregin, S.V.: Thickness-shear modes in structures with alternating magnetic and nonmagnetic layers. Phys. Met. Metallogr. 103, 461–465 (2007)

    Article  Google Scholar 

  17. Bakharev, S.M., Borich, M.A., Savchenko, S.P.: Features of focusing magnetoelastic waves in YIG crystals. J. Phys. Conf. Ser. 1389, 012096 (2019)

    Article  Google Scholar 

  18. Bakharev, S.M., Borich, M.A., Savchenko, S.P.: Caustic of magnetoelastic waves in elastically isotropic ferromagnets. J. Magn. Magn. Mater. 530, 167862 (2021)

    Article  Google Scholar 

  19. Babu, N.K.P., Trzaskowska, A., Graczyk, P., Centala, G., Mieszczak, S., Glowwinski, H., Zdunek, M., Mielcarek, S., Klos, J.W.: The interaction between surface acoustic waves and spin waves: the role of anisotropy and spatial profiles of the modes. Nano Lett. 21, 946–951 (2021)

    Article  Google Scholar 

  20. Frey, P., Vasyuchka, V.I., Hillebrands, B., Serga, A.A.: Wavevector-dependent magnon accumulation in parametrically populated magnon-phonon spectrum. J. Magn. Magn. Mater. 545, 168628 (2021)

    Article  Google Scholar 

  21. Rückriegel, A., Kopietz, P., Bozhko, D.A., Serga, A.A., Hillebrands, B.: Magnetoelastic modes and lifetime of magnons in thin yttrium iron garnet films. Phys. Rev. B 89, 184413 (2014)

    Article  Google Scholar 

  22. Kuzmichev, A.N., Belotelov, V.I., Bunkov, Y.M., Vetoshko, P.M., Sabdenov, Ch.K., Trukhanov, A.V., Fedorenko, A.A.: Identification of a new source of magnon relaxation in interface between epitaxial iron garnet ferrite films and GGG substrate. Mater. Res. Bull. 146, 111691 (2021)

    Google Scholar 

  23. Polzikova, N.I., Alekseev, S.G., Luzanov, V.A., Raevskiy, A.O.: Resonant spin pumping in an acoustic microwave resonator with ZnO-GGG-YIG/Pt structure. Bull. Russ. Acad. Sci. Phys. 83, 828–831 (2019)

    Article  Google Scholar 

  24. Besse, V., Golov, A.V., Vlasov, V.S., Kuzmin, A.D., Bychkov, I.V., Kotov, L.N., Temnov, V.V.: Generation of exchange magnons in thin ferromagnetic films by ultrashort acoustic pulses. J. Magn. Magn. Mater. 502, 166320 (2020)

    Article  Google Scholar 

  25. Manago, T., Aziz, M.M., Ogrin, F., Kasahara, K.: Influence of the conductivity on spin waves propagating in a permalloy waveguide. J. Appl. Phys. 126, 043904 (2019)

    Article  Google Scholar 

  26. Yang, J.S.: A macroscopic theory of saturated ferromagnetic conductors. arXiv preprint arXiv:2306.11525 (2023)

  27. Sun, Y.J., Lai, J.M., Pang, S.M., Liu, X.L., Tan, P.H., Zhang, J.: Magneto-raman study of magnon-phonon coupling in two-dimensional ising antiferromagnetic feps3. J. Phys. Chem. Lett. 6, 13 (2022)

    Google Scholar 

  28. Bozhko, D.A., Vasyuchka, V.I., Chumak, A.V., Serga, A.A.: Magnon-phonon interactions in magnon spintronics. Low Temp. Phys. 46, 383–399 (2020)

    Article  Google Scholar 

  29. Yang, J.S.: Antiplane motions of piezoceramics and acoustic wave devices. World Scientific (2010)

    Book  Google Scholar 

  30. Ugural, A.C.: Stresses in plates and shells. McGraw-Hill (1981)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12072167 and 11972199), the Zhejiang Provincial Natural Science Foundation of China (No. LZ22A020001), and the K. C. Wong Magana Fund through Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianke Du.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Q., Du, J. & Yang, J. Antiplane problems of saturated ferromagnetoelastic solids. Acta Mech 235, 533–541 (2024). https://doi.org/10.1007/s00707-023-03711-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03711-2

Navigation