Skip to main content
Log in

Micromechanical simulation of thermal expansion, elastic stiffness and piezoelectric constants of graphene/unidirectional BaTiO3 fiber reinforced epoxy hybrid nanocomposites

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

One mechanism that is expected to play a key role in the enhanced properties of fiber-reinforced composites is adding nano-scale fillers as the second reinforcing agents in the polymer matrix. In this paper, micromechanical analysis of a hybrid smart nanocomposite in which continuous BaTiO3 fibers are embedded into the graphene nanosheet (GNS)-contained epoxy matrix is performed. The Mori–Tanaka model is used at a multi-step procedure to predict the thermal expansion (TE), elastic stiffness and piezoelectric constants of BaTiO3 fiber/graphene hybrid nanocomposites. The micromechanical model has the ability to describe the non-uniform dispersion of GNSs into the epoxy matrix. Further, the effect of the interfacial interaction between the graphene nanoparticles and polymer is captured in the smart nanocomposite modeling through the inclusion of an equivalent solid interphase. Our results indicate that by adding GNSs into the epoxy resin, all stiffness constants, transverse coefficient of TE and piezoelectric constants \({e}_{31}\) and \({e}_{15}\) of the hybrid nanocomposite are significantly improved. However, non-uniform dispersion and agglomeration of GNSs can decrease the thermo-mechanical and piezoelectric performances of the BaTiO3 fiber/graphene hybrid nanocomposite. In addition, the dependence of effective properties on the interphase characteristics and alignment of GNSs is tested and discussed in details. Comparison studies are carried out in order to show the validity of the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chatzigeorgiou, G., Benaarbia, A., Meraghni, F.: Piezoelectric-piezomagnetic behaviour of coated long fiber composites accounting for eigenfields. Mech. Mater. 138, 103157 (2019)

    Google Scholar 

  2. Ping, X., Chen, M., Xiao, Y., Wang, Q.: Field intensity factors around inclusion corners in 0–3 and 1–3 composites subjected to thermo-mechanical loads. Int. J. Mech. Mater. Des. 12(1), 121–139 (2016)

    Google Scholar 

  3. Haghgoo, M., Hassanzadeh-Aghdam, M.K., Ansari, R.: Effect of piezoelectric interphase on the effective magneto-electro-elastic properties of three-phase smart composites: a micromechanical study. Mech. Adv. Mater. Struct. 26(23), 1935–1950 (2019)

    Google Scholar 

  4. Xu, L.F., Yu, T.C., Feng, X., Yang, C.P., Chen, Y., Chen, W., Zhou, J.: Dimension dependence of thickness resonance behavior of piezoelectric fiber composites. Mater. Chem. Phys. 218, 34–38 (2018)

    Google Scholar 

  5. Yang, Z., Wang, J., Hu, Y., Deng, C., Zhu, K., Qiu, J.: Simultaneously improved dielectric constant and breakdown strength of PVDF/Nd-BaTiO3 fiber composite films via the surface modification and subtle filler content modulation. Compos. A Appl. Sci. Manuf. 128, 105675 (2020)

    Google Scholar 

  6. Wan, B., Li, H., Xiao, Y., Pan, Z., Zhang, Q.: Improved breakdown strength and energy density of polyimide composites by interface engineering between BN and BaTiO3 fibers. J. Mater. Sci. Technol. 74, 1–10 (2021)

    Google Scholar 

  7. Dang, Z.M., Fan, L.Z., Shen, Y., Nan, C.W.: Study on dielectric behavior of a three-phase CF/(PVDF+ BaTiO3) composite. Chem. Phys. Lett. 369(1–2), 95–100 (2003)

    Google Scholar 

  8. Wan, B., Li, H., Xiao, Y., Yue, S., Liu, Y., Zhang, Q.: Enhanced dielectric and energy storage properties of BaTiO3 nanofiber/polyimide composites by controlling surface defects of BaTiO3 nanofibers. Appl. Surf. Sci. 501, 144243 (2020)

    Google Scholar 

  9. Chen, L.F., Hong, Y.P., Chen, X.J., Wu, Q.L., Huang, Q.J., Luo, X.T.: Preparation and properties of polymer matrix piezoelectric composites containing aligned BaTiO3 whiskers. J. Mater. Sci. 39(9), 2997–3001 (2004)

    Google Scholar 

  10. Liu, J., Zuo, H., Xia, W., Luo, Y., Yao, D., Chen, Y., Li, Q.: Wind energy harvesting using piezoelectric macro fiber composites based on flutter mode. Microelectron. Eng. 231, 111333 (2020)

    Google Scholar 

  11. Tan, D., Yavarow, P., Erturk, A.: Nonlinear elastodynamics of piezoelectric macro-fiber composites with interdigitated electrodes for resonant actuation. Compos. Struct. 187, 137–143 (2018)

    Google Scholar 

  12. Lin, X., Huang, S., Zhou, K., Zhang, D.: The influence of structural parameters on the actuation performance of piezoelectric fiber composites. Mater. Des. 107, 123–129 (2016)

    Google Scholar 

  13. Kundalwal, S.I., Ray, M.C.: Shear lag analysis of a novel short fuzzy fiber-reinforced composite. Acta Mech. 225, 2621–2643 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Kundalwal, S.I., Ray, M.C.: Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int. J. Therm. Sci. 76, 90–100 (2014)

    Google Scholar 

  15. Papageorgiou, D.G., Kinloch, I.A., Young, R.J.: Hybrid multifunctional graphene/glass-fibre polypropylene composites. Compos. Sci. Technol. 137, 44–51 (2016)

    Google Scholar 

  16. Kundalwal, S.I., Meguid, S.A.: Multiscale modeling of regularly staggered carbon fibers embedded in nano-reinforced composites. Eur. J. Mech.-A/Solids 64, 69–84 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Wang, F., Drzal, L.T., Qin, Y., Huang, Z.: Size effect of graphene nanoplatelets on the morphology and mechanical behavior of glass fiber/epoxy composites. J. Mater. Sci. 51(7), 3337–3348 (2016)

    Google Scholar 

  18. Zhang, B., Asmatulu, R., Soltani, S.A., Le, L.N., Kumar, S.S.: Mechanical and thermal properties of hierarchical composites enhanced by pristine graphene and graphene oxide nanoinclusions. J. Appl Polym Sci. (2014). https://doi.org/10.1002/app.40826

    Article  Google Scholar 

  19. Kim, Y.A., Kamio, S., Tajiri, T., Hayashi, T., Song, S.M., Endo, M., Dresselhaus, M.S.: Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90(9), 093125 (2007)

    Google Scholar 

  20. Godara, S.S., Mahato, P.K.: Micromechanical technique based prediction of effective properties for hybrid smart nanocomposites. Mech. Adv. Mater. Struct. 29(14), 2065–2073 (2022)

    Google Scholar 

  21. Hasanzadeh, M., Ansari, R., Hassanzadeh-Aghdam, M.K.: Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 129, 63–79 (2019)

    Google Scholar 

  22. Wang, Z., Nelson, J.K., Miao, J., Linhardt, R.J., Schadler, L.S., Hillborg, H., Zhao, S.: Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans. Dielectr. Electr. Insul. 19(3), 960–967 (2012)

    Google Scholar 

  23. Hadden, C.M., Klimek-McDonald, D.R., Pineda, E.J., King, J.A., Reichanadter, A.M., Miskioglu, I., Odegard, G.M.: Mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and experiments. Carbon 95, 100–112 (2015)

    Google Scholar 

  24. Valorosi, F., De Meo, E., Blanco-Varela, T., Martorana, B., Veca, A., Pugno, N., Palermo, V.: Graphene and related materials in hierarchical fiber composites: Production techniques and key industrial benefits. Compos. Sci. Technol. 185, 107848 (2020)

    Google Scholar 

  25. Rafiee, M., Nitzsche, F., Laliberte, J., Hind, S., Robitaille, F., Labrosse, M.R.: Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide and reduced-graphene oxide. Compos. B Eng. 164, 1–9 (2019)

    Google Scholar 

  26. Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., Loos, A.: Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos. A Appl. Sci. Manuf. 70, 82–92 (2015)

    Google Scholar 

  27. Qin, W., Vautard, F., Drzal, L.T., Yu, J.: Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos. B Eng. 69, 335–341 (2015)

    Google Scholar 

  28. Tang, L.C., Wan, Y.J., Yan, D., Pei, Y.B., Zhao, L., Li, Y.B., Lai, G.Q.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)

    Google Scholar 

  29. Hassanzadeh-Aghdam, M.K.: Evaluating the effective creep properties of graphene-reinforced polymer nanocomposites by a homogenization approach. Compos. Sci. Technol. 209, 108791 (2021)

    Google Scholar 

  30. Rafiee, R., Eskandariyun, A.: Predicting Young’s modulus of agglomerated graphene/polymer using multi-scale modeling. Compos. Struct. 245, 112324 (2020)

    Google Scholar 

  31. Zaman, I., Phan, T.T., Kuan, H.C., Meng, Q., La, L.T.B., Luong, L., Ma, J.: Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52(7), 1603–1611 (2011)

    Google Scholar 

  32. Wan, C., Chen, B.: Reinforcement and interphase of polymer/graphene oxide nanocomposites. J. Mater. Chem. 22(8), 3637–3646 (2012)

    Google Scholar 

  33. Lin, C.H., Muliana, A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224(7), 1471–1492 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Dai, Q., Ng, K.: Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling. Mech. Mater. 53, 29–46 (2012)

    Google Scholar 

  35. Li, Z., Ye, J., Liu, L., Cai, H., He, W., Cai, G., Wang, Y.: Evaluation of piezoelectric and mechanical properties of the piezoelectric composites with local damages. Mech. Adv. Mater. Struct. 29(23), 1–25 (2021)

    Google Scholar 

  36. Lezgy-Nazargah, M., Eskandari-Naddaf, H.: Effective coupled thermo-electro-mechanical properties of piezoelectric structural fiber composites: a micromechanical approach. J. Intell. Mater. Syst. Struct. 29(4), 496–513 (2018)

    Google Scholar 

  37. Panda, S.P., Panda, S.: Micromechanical finite element analysis of effective properties of a unidirectional short piezoelectric fiber reinforced composite. Int. J. Mech. Mater. Des. 11(1), 41–57 (2015)

    Google Scholar 

  38. Dhala, S., Ray, M.C.: Micromechanics of piezoelectric fuzzy fiber-reinforced composite. Mech. Mater. 81, 1–17 (2015)

    Google Scholar 

  39. Haghgoo, M., Ansari, R., Hassanzadeh-Aghdam, M.K., Darvizeh, A.: Fully coupled thermo-magneto-electro-elastic properties of unidirectional smart composites with a piezoelectric interphase. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 233(8), 2813–2829 (2019)

    Google Scholar 

  40. Tang, T., Yu, W.: Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials. Mech. Mater. 40(10), 812–824 (2008)

    Google Scholar 

  41. Zare, Y.: Effects of interphase on tensile strength of polymer/CNT nanocomposites by Kelly-Tyson theory. Mech. Mater. 85, 1–6 (2015)

    MathSciNet  Google Scholar 

  42. Tsai, J.L., Tzeng, S.H., Chiu, Y.T.: Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. B Eng. 41(1), 106–115 (2010)

    Google Scholar 

  43. Kundalwal, S.I., Meguid, S.A.: Micromechanics modelling of the effective thermoelastic response of nano-tailored composites. Eur. J. Mech. A/Solids 53, 241–253 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Ji, X.Y., Cao, Y.P., Feng, X.Q.: Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modell. Simul. Mater. Sci. Eng. 18(4), 045005 (2010)

    Google Scholar 

  45. Moradi-Dastjerdi, R., Pourasghar, A., Foroutan, M.: The effects of carbon nanotube orientation and aggregation on vibrational behavior of functionally graded nanocomposite cylinders by a mesh-free method. Acta Mech. 224(11), 2817–2832 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Shi, D.L., Feng, X.Q., Huang, Y.Y., Hwang, K.C., Gao, H.: The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composites. J. Eng. Mater. Technol. 126(3), 250–257 (2004)

    Google Scholar 

  47. Craft, W.J., Christensen, R.M.: Coefficient of thermal expansion for composites with randomly oriented fibers. J. Compos. Mater. 15(1), 2–20 (1981)

    Google Scholar 

  48. Mital, S.K., Murthy, P.L., Goldberg, R.K.: Micromechanics for particulate-reinforced composites. Mech. Compos. Mater. Struct. An Int. J. 4(3), 251–266 (1997)

    Google Scholar 

  49. Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)

    Google Scholar 

  50. Dunn, M.L., Taya, M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30(2), 161–175 (1993)

    MATH  Google Scholar 

  51. Dunn, M.L.: Micromechanics of coupled electroelastic composites: effective thermal expansion and pyroelectric coefficients. J. Appl. Phys. 73(10), 5131–5140 (1993)

    Google Scholar 

  52. Mishra, N., Das, K.: A Mori-Tanaka based micromechanical model for predicting the effective electroelastic properties of orthotropic piezoelectric composites with spherical inclusions. SN Appl. Sci. 2(7), 1–14 (2020)

    Google Scholar 

  53. Koutsawa, Y.: Overall thermo-magneto-electro-elastic properties of multiferroics composite materials with arbitrary heterogeneities spatial distributions. Compos. Struct. 133, 764–773 (2015)

    Google Scholar 

  54. Chan, H.L.W., Unsworth, J.: Simple model for piezoelectric ceramic/polymer 1–3 composites used in ultrasonic transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36(4), 434–441 (1989)

    Google Scholar 

  55. Sadowski, P., Kowalczyk-Gajewska, K., Stupkiewicz, S.: Classical estimates of the effective thermoelastic properties of copper–graphene composites. Compos. B Eng. 80, 278–290 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Raytheon Chair for Systems Engineering for the funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Ansari or M. K. Hassanzadeh-Aghdam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Nonzero components of Eshelby tensor \({\hat{\mathbf{S}}}\) for a long fibrous reinforcement are expressed as

$$\begin{gathered} \hat{S}_{1111} = \hat{S}_{2222} = \frac{{5C_{11}^{m} + C_{12}^{m} }}{{8C_{11}^{m} }} \hfill \\ \hat{S}_{1212} = \hat{S}_{2121} = \hat{S}_{1221} = \hat{S}_{2112} = \frac{{3C_{11}^{m} - C_{12}^{m} }}{{8C_{11}^{m} }} \hfill \\ \hat{S}_{1313} = \hat{S}_{3131} = \hat{S}_{1331} = \hat{S}_{3113} = \hat{S}_{2323} = \hat{S}_{3232} = \hat{S}_{2332} = \hat{S}_{3223} = \frac{1}{4} \hfill \\ \hat{S}_{1122} = \hat{S}_{2211} = \frac{{3C_{12}^{m} - C_{11}^{m} }}{{8C_{11}^{m} }} \hfill \\ \hat{S}_{1133} = \hat{S}_{2233} = \frac{{C_{13}^{m} }}{{2C_{11}^{m} }}, \hat{S}_{1143} = \hat{S}_{2243} = \frac{{e_{31}^{m} }}{{2C_{11}^{m} }}, \hat{S}_{4141} = \hat{S}_{4242} = \frac{1}{2} \hfill \\ \end{gathered}$$
(24)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keramati, Y., Ansari, R., Hassanzadeh-Aghdam, M.K. et al. Micromechanical simulation of thermal expansion, elastic stiffness and piezoelectric constants of graphene/unidirectional BaTiO3 fiber reinforced epoxy hybrid nanocomposites. Acta Mech 234, 6251–6270 (2023). https://doi.org/10.1007/s00707-023-03710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03710-3

Navigation