Skip to main content
Log in

Attenuation of Rayleigh waves by a nonlinear metamaterial with serial-connected resonators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

There has been a rising interest in utilizing metamaterials to manipulate the propagation of surface waves, including Rayleigh waves. These novel materials have a diverse range of applications, from micro-scale sensors and actuators to macro-scale seismic protection systems. In the field of seismic engineering, they are commonly referred to as seismic metamaterials. While various linear seismic metamaterials have been developed, incorporating nonlinearity into the design of seismic metamaterials could reveal novel phenomena and greatly expand their potential applications. In the present study, we propose a nonlinear metamaterial to block the propagation of low-frequency Rayleigh waves. The proposed metamaterial consists of a linear elastic substrate and nonlinear resonant units periodically attached to the surface of the substrate. Each resonant unit has two Duffing oscillators connected in series. We use the first-order harmonic balance method to derive analytical solutions for the dispersion of Rayleigh waves, considering both linear and various nonlinear cases. Our findings demonstrate that by coupling the motion of an elastic substrate with the dynamics of attached masses, a linear metamaterial with serial-connected resonators can achieve two band gaps. Furthermore, introducing softening nonlinearity can facilitate the attainment of a low-frequency band gap, while introducing hardening nonlinearity may result in the closure of the original linear band gaps. Our study broadens the range of applications for elastic metamaterials and potentially contributes to the development of more effective seismic wave blockers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kushwaha, M.S., Halevi, P., Dobrzynski, L., Djafari-Rouhani, B.: Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71(13), 2022–2025 (1993)

    Google Scholar 

  2. Hussein, M.I., Leamy, M.J., Ruzzene, M.: Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014)

    Google Scholar 

  3. Su, X.L., Gao, Y.W., Zhou, Y.H.: The influence of material properties on the elastic band structures of one-dimensional functionally graded phononic crystals. J. Appl. Phys. 112(12), 123503 (2012)

    Google Scholar 

  4. Wu, M.L., Wu, L.Y., Yang, W.P., Chen, L.W.: Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials. Smart Mater. Struct. 18(11), 115013 (2009)

    Google Scholar 

  5. Zhu, R., Liu, X.N., Hu, G.K., Yuan, F.G., Huang, G.L.: Microstructural designs of plate-type elastic metamaterial and their potential applications: a review. Int. J. Smart Nano Mater. 6(1), 14–40 (2015)

    Google Scholar 

  6. Al Ba’Ba’A, H., Nouh, M.: An investigation of vibrational power flow in one-dimensional dissipative phononic structures. J. Vib. Acoust. 139(2), 021003 (2017)

    Google Scholar 

  7. Aladwani, A., Almandeel, A., Nouh, M.: Fluid-structural coupling in metamaterial plates for vibration and noise mitigation in acoustic cavities. Int. J. Mech. Sci. 152, 151–166 (2019)

    Google Scholar 

  8. Wen, S.R., Xiong, Y.H., Hao, S.M., Li, F.M., Zhang, C.Z.: Enhanced band-gap properties of an acoustic metamaterial beam with periodically variable cross-sections. Int. J. Mech. Sci. 166, 105229 (2020)

    Google Scholar 

  9. Liu, Z.Y., Zhang, X.X., Mao, Y.W., Zhu, Y.Y., Yang, Z.Y., Chan, C.T., Sheng, P.: Locally resonant sonic materials. Science 289(5485), 1734–1736 (2000)

    Google Scholar 

  10. Huang, G.L., Sun, C.T.: Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoust. 132(3), 031003 (2010)

    Google Scholar 

  11. Nobrega, E.D., Gautier, F., Pelat, A., Dos Santos, J.M.C.: Vibration band gaps for elastic metamaterial rods using wave finite element method. Mech. Syst. Signal Process. 79, 192–202 (2016)

    Google Scholar 

  12. Nouh, M., Aldraihem, O., Baz, A.: Vibration characteristics of metamaterial beams with periodic local resonances. J. Vib. Acoust. 136(6), 061012 (2014)

    Google Scholar 

  13. Chen, J.S., Huang, Y.J., Chien, I.T.: Flexural wave propagation in metamaterial beams containing membrane-mass structures. Int. J. Mech. Sci. 131, 500–506 (2017)

    Google Scholar 

  14. Gao, C., Halim, D., Yi, X.S.: Elastic metamaterial with multiple resonant modes and asymmetric structure design for low-frequency vibration absorption. Acta Mech. 233, 5321–5333 (2022)

    MATH  Google Scholar 

  15. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47(4), 610–617 (2009)

    Google Scholar 

  16. Wang, K., Zhou, J.X., Wang, Q., Ouyang, H.J., Xu, D.L.: Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation. Appl. Phys. Lett. 114(25), 251902 (2019)

    Google Scholar 

  17. Cheng, Y., Xu, J.Y., Liu, X.J.: One-dimensional structured ultrasonic metamaterials with simultaneously negative dynamic density and modulus. Phys. Rev. B 77(4), 045134 (2008)

    Google Scholar 

  18. Chen, H.Y., Chan, C.T.: Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91(18), 183518 (2007)

    Google Scholar 

  19. Kerferd, B., Eggler, D., Karimi, M., Kessissoglou, N.: Active acoustic cloaking of cylindrical shells in low Mach number flow. J. Sound Vib. 479, 115400 (2020)

    Google Scholar 

  20. House, C., Cheer, J., Daley, S.: An experimental investigation into active structural acoustic cloaking of a flexible cylinder. Appl. Acoust. 170, 107436 (2020)

    Google Scholar 

  21. Torrent, D., Sánchez-Dehesa, J.: Acoustic metamaterials for new two-dimensional sonic devices. New J. Phys. 9(9), 323 (2007)

    Google Scholar 

  22. Deng, K., Ding, Y.Q., He, Z.J., Zhao, H.P., Shi, J., Liu, Z.Y.: Theoretical study of subwavelength imaging by acoustic metamaterial slabs. J. Appl. Phys. 105(12), 124909 (2009)

    Google Scholar 

  23. Manimala, J.M., Sun, C.T.: Microstructural design studies for locally dissipative acoustic metamaterials. J. Appl. Phys. 115(2), 023518 (2014)

    Google Scholar 

  24. Chen, Y.Y., Barnhart, M.V., Chen, J.K., Hu, G.K., Sun, C.T., Huang, G.L.: Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale. Compos. Struct. 136, 358–371 (2016)

    Google Scholar 

  25. Wang, Y.F., Wang, Y.S., Laude, V.: Wave propagation in two-dimensional viscoelastic metamaterials. Phys. Rev. B 92(10), 104110 (2015)

    Google Scholar 

  26. Lou, J., He, L.W., Yang, J., Kitipornchai, S., Wu, H.P.: Wave propagation in viscoelastic phononic crystal rods with internal resonators. Appl. Acoust. 141, 382–392 (2018)

    Google Scholar 

  27. Wang, Y.F., Wang, Y.Z., Wu, B., Chen, W.Q., Wang, Y.S.: Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72(4), 040801 (2020)

    Google Scholar 

  28. Ren, T., Liu, C.C., Li, F.M., Zhang, C.Z.: Active tunability of band gaps for a novel elastic metamaterial plate. Acta Mech. 231, 4035–4053 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Li, J.R., Miao, Z.J., Ma, Q.F., Lin, W.: Size-dependent complex band structure of tunable beam metamaterial with shunted piezoelectric array. Acta Mech. 233, 889–904 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Emerson, T.A., Manimala, J.M.: Passive-adaptive mechanical wave manipulation using nonlinear metamaterial plates. Acta Mech. 231, 4665–4681 (2020)

    Google Scholar 

  31. Sheng, P., Fang, X., Wen, J.H., Yu, D.L.: Vibration properties and optimized design of a nonlinear acoustic metamaterial beam. J. Sound Vib. 492, 115739 (2021)

    Google Scholar 

  32. Xia, Y.W., Ruzzene, M., Erturk, A.: Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dyn. 102, 1285–1296 (2020)

    Google Scholar 

  33. Liu, M., Zhu, W.D.: Modeling and analysis of nonlinear wave propagation in one-dimensional phononic structures. J. Vib. Acoust. 140(6), 061010 (2018)

    Google Scholar 

  34. Manktelow, K.L., Leamy, M.J., Ruzzene, M., Toplogy Design and Optimization of Nonlinear Metamaterials, in: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers, pp. 233–243 (2012)

  35. Lazarov, B.S., Jensen, J.S.: Low-frequency band gaps in chains with attached non-linear oscillators. Int. J. Non-Linear Mech. 42(10), 1186–1193 (2007)

    Google Scholar 

  36. Fang, X., Wen, J.H., Yu, D.L., Huang, G.L., Yin, J.F.: Wave propagation in a nonlinear acoustic metamaterial beam considering third harmonic generation. New J. Phys. 20(12), 123028 (2018)

    Google Scholar 

  37. Li, Z.N., Wang, Y.Z., Wang, Y.S.: Nonreciprocal phenomenon in nonlinear elastic wave metamaterials with continuous properties. Int. J. Solids Struct. 150, 125–134 (2018)

    Google Scholar 

  38. Frazier, M.J., Kochmann, D.M.: Band gap transmission in periodic bistable mechanical systems. J. Sound Vib. 388, 315–326 (2017)

    Google Scholar 

  39. Nesterenko, V.F.: Propagation of nonlinear compression pulses in granular media. J. Appl. Mech. Tech. Phys. 24(5), 733–743 (1984)

    Google Scholar 

  40. Nadkarni, N., Arrieta, A.F., Chong, C., Kochmann, D.M., Daraio, C.: Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116(24), 244501 (2016)

    Google Scholar 

  41. Hung, H.H., Yang, Y.B.: A review of researches on ground-borne vibrations with emphasis on those induced by trains. Proc. Nat. Sci. Council Part A: Phys. Sci. & Eng. 25(1), 1–16 (2001)

    Google Scholar 

  42. Yang, Y.B., Hung, H.H., Chang, D.W.: Train-induced wave propagation in layered soils using finite/infinite element simulation. Soil Dyn. Earthq. Eng. 23(4), 263–278 (2003)

    Google Scholar 

  43. Pu, X.B., Shi, Z.F.: Periodic pile barriers for Rayleigh wave isolation in a poroelastic half-space. Soil Dyn. Earthq. Eng. 121, 75–86 (2019)

    Google Scholar 

  44. Yang, Y.B., Hung, H.H.: A parametric study of wave barriers for reduction of train-induced vibrations. Int. J. Numer. Meth. Eng. 40(20), 3729–3747 (1997)

    MATH  Google Scholar 

  45. Takemiya, H., Fujiwara, A.: Wave propagation/impediment in a stratum and wave impeding block (WIB) measured for SSI response reduction. Soil Dyn. Earthq. Eng. 13(1), 49–61 (1994)

    Google Scholar 

  46. Takemiya, H., Jiang, J.Q.: Wave impeding effect by buried rigid block and response reduction of dynamically excited pile foundation. Doboku Gakkai Ronbunshu 1993(477), 45–52 (1993)

    Google Scholar 

  47. Chouw, N., Le, R., Schmid, G.: Propagation of vibration in a soil layer over bedrock. Eng. Anal. Boundary Elem. 8(3), 125–131 (1991)

    Google Scholar 

  48. Takemiya, H., Shimabuku, J.: Application of soil-cement columns for better seismic design of bridge piles and mitigation of nearby ground vibration due to traffic. J. Struct. Eng. 48, 437–444 (2002)

    Google Scholar 

  49. Takemiya, H.: Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct. Soil Dyn. Earthq. Eng. 24(1), 69–87 (2004)

    Google Scholar 

  50. Brûlé, S., Javelaud, E., Enoch, S., Guenneau, S.: Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112(13), 133901 (2014)

    Google Scholar 

  51. Colombi, A., Roux, P., Guenneau, S., Gueguen, P., Craster, R.V.: Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances. Sci. Rep. 6(1), 19238 (2016)

    Google Scholar 

  52. Colombi, A., Colquitt, D., Roux, P., Guenneau, S., Craster, R.V.: A seismic metamaterial: The resonant metawedge. Sci. Rep. 6(1), 27717 (2016)

    Google Scholar 

  53. Palermo, A., Krödel, S., Marzani, A., Daraio, C.: Engineered metabarrier as shield from seismic surface waves. Sci. Rep. 6(1), 39356 (2016)

    Google Scholar 

  54. Chen, Y.Y., Qian, F., Scarpa, F., Zuo, L., Zhuang, X.Y.: Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps. Mater. Des. 175, 107813 (2019)

    Google Scholar 

  55. Pu, X.B., Palermo, A., Cheng, Z.B., Shi, Z.F., Marzani, A.: Seismic metasurfaces on porous layered media: Surface resonators and fluid-solid interaction effects on the propagation of Rayleigh waves. Int. J. Eng. Sci. 154, 103347 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Palermo, A., Vitali, M., Marzani, A.: Metabarriers with multi-mass locally resonating units for broad band Rayleigh waves attenuation. Soil Dyn. Earthq. Eng. 113, 265–277 (2018)

    Google Scholar 

  57. Palermo, A., Yousefzadeh, B., Daraio, C., Marzani, A.: Rayleigh wave propagation in nonlinear metasurfaces. J. Sound Vib. 520, 116599 (2022)

    Google Scholar 

  58. Wu, X.Y., Wen, Z.H., Jin, Y.B., Rabczuk, T., Zhuang, X.Y., Djafari-Rouhani, B.: Broadband Rayleigh wave attenuation by gradient metamaterials. Int. J. Mech. Sci. 205, 106592 (2021)

    Google Scholar 

  59. Lou, J., Fang, X., Du, J., Wu, H.: Propagation of fundamental and third harmonics along a nonlinear seismic metasurface. Int. J. Mech. Sci. 221, 107189 (2022)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was funded by the China Scholarship Council (No. 202208330229).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Lou or Jianke Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, J., Fan, H., Zhang, A. et al. Attenuation of Rayleigh waves by a nonlinear metamaterial with serial-connected resonators. Acta Mech 234, 4963–4976 (2023). https://doi.org/10.1007/s00707-023-03645-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03645-9

Navigation