Skip to main content
Log in

Prediction of tensile elastic modulus of SiC/SiC mini-composites with the artificial neural network

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study is aimed to develop an artificial neural network (ANN)-based method for predicting the elastic modulus of Continuous SiC fiber-reinforced SiC ceramic matrix (SiC/SiC) mini-composites. The mesomechanical model with pores is established based on the microstructure of ceramic matrix mini-composites. The main factors affecting the tensile elastic modulus of mini-composites were obtained using a fidelity mesomechanical model combined with finite element analysis (FEA). Secondly, based on the main factors and the finite element simulation data, the backpropagation (BP) neural network is established to map the complex relationship between the elastic modulus and the structural parameters of the mini composite material. Finally, FEA is used to verify the rationality of the neural network. The results show that the ANN algorithm is robust in the prediction of tensile modulus of mini composite materials, and the prediction error of the neural network model using only one hidden layer and 2300 groups of data samples is less than 0.7% in the input of fiber elastic modulus, fiber volume ratio, and porosity. Therefore, the ANN model proposed in this study helps to evaluate the performance of SiC/SiC mini-composites during the design phase, shortening the design and manufacturing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alvin, M.A., Anderson, I., Heidloff, A., White, E., Bhatt, R., Grady, J., McMordie, B., Warnes, B.: Development of advanced material systems for future gas turbine applications. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition (2015). https://doi.org/10.1115/gt2015-43456

  2. DiCarlo, J.A., Mark, V.R.: Ceramic composite development for gas turbine engine hot section components. In: ASME Turbo Expo 2006: Power for Land, Sea, and Air. (2006). https://doi.org/10.1115/gt2006-90151

  3. Bansal, N.P., Lamon, J.: Ceramic matrix composites: materials. Model. Technol. (2014). https://doi.org/10.1002/9781118832998

    Article  Google Scholar 

  4. Wen, H., Xu, N., Yuanming, X.: An experimental study on the in situ strength of SiC fibre in unidirectional SiC/Al composites. Compos. Part A Appl. Sci. Manuf. 34(12), 1161–1166 (2003). https://doi.org/10.1016/j.compositesa.2003.08.005

    Article  Google Scholar 

  5. Yuanxin, Z., Yuanming, X.: In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires. Compos. Sci. Technol. 61(14), 2017–2023 (2001). https://doi.org/10.1016/S0266-3538(01)00100-2

    Article  Google Scholar 

  6. Henning, R., Piet, W.M.P.: Tensile strength distribution of all-oxide ceramic matrix mini-composites with porous alumina matrix phase. J. Eur. Ceram. Soc. 36(13), 3185–3191 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.012

    Article  Google Scholar 

  7. Choi, J., Tamma, K.K.: Woven fabric composites—part I: Predictions of homogenized elastic properties and micromechanical damage analysis. Int. J. Numer. Meth. Eng. 50(10), 2285–2298 (2001). https://doi.org/10.1002/nme.112

    Article  MATH  Google Scholar 

  8. Choi, A.H., Heness, G., Ben-Nissan, B.: Using finite element analysis (FEA) to understand the mechanical properties of ceramic matrix composites, In: Advances in Ceramic Matrix Composites. Elsevier. 286–311(2014). https://doi.org/10.1533/9780857098825.2.286

  9. Jiang, H., Ren, Y., Liu, Z., Zhang, S.: Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites. J. Mater. Sci. 54, 1363–1381 (2019). https://doi.org/10.1007/s10853-018-2928-6

    Article  Google Scholar 

  10. Rayhan, S.B., Rahman, M.M.: Modeling elastic properties of unidirectional composite materials using Ansys Material Designer. Procedia Struct. Integr. 28, 1892–1900 (2020). https://doi.org/10.1016/j.prostr.2020.11.012

    Article  Google Scholar 

  11. Bishop, C.M., Nasrabadi, N.M.: Pattern Recognition and Machine Learning, vol. 4. Springer, New York (2006)

    Google Scholar 

  12. Raudys, S.J., Jain, A.K.: Small size effects in statistical pattern recognition: recommendations for practicioners. IEEE Trans. Pattern Anal. Mach. Intell. (1991). https://doi.org/10.1109/34.75512

    Article  Google Scholar 

  13. Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018). https://doi.org/10.1016/j.neucom.2018.01.002

    Article  Google Scholar 

  14. Yang, H.-J., Tan, M.: Sliding mode control for flexible-link manipulators based on adaptive neural networks. Int. J. Autom. Comput. (2018). https://doi.org/10.1007/s11633-018-1122-2

    Article  Google Scholar 

  15. Witten, I.H.: Chapter 6 – Implementations: Real Machine Learning Schemes. (2011). doi:https://doi.org/10.1016/B978-0-12-374856-0.00006-7

  16. Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S.: An investigation of machine learning based prediction systems. J. Syst. Softw. 53(1), 23–29 (2000). https://doi.org/10.1016/S0164-1212(00)00005-4

    Article  Google Scholar 

  17. Chen, F., Hao, L., Xu, Z., Hou, S., Yang, D.: User-friendly optimization approach of fed-batch fermentation conditions for the production of iturin A using artificial neural networks and support vector machine. Electron. J. Biotechnol. 18(4), 273–280 (2015). https://doi.org/10.1016/j.ejbt.2015.05.001

    Article  Google Scholar 

  18. Sommer, C., Gerlich, D.W.: Machine learning in cell biology—teaching computers to recognize phenotypes. J. Cell Sci. 126(24), 5529–5539 (2013). https://doi.org/10.1242/jcs.123604

    Article  Google Scholar 

  19. Tarca, A.L., Carey, V.J., Chen, X., Romero, R., Drăghici, S.: Machine learning and its applications to biology. PLoS Comput. Biol. 3(6), e116 (2007). https://doi.org/10.1371/journal.pcbi.0030116

    Article  Google Scholar 

  20. Pidaparti, R.M.V., Palakal, M.J.: Material model for composites using neural networks. AIAA J. 31(8), 1533–1535 (1993). https://doi.org/10.2514/3.11810

    Article  Google Scholar 

  21. Charles, Y., Youngsoo, K., Seunghwa, R., Grace, X.G.: Prediction of composite microstructure stress-strain curves using convolutional neural networks. Mater. Des. 189, 108509 (2020). https://doi.org/10.1016/j.matdes.2020.108509

    Article  Google Scholar 

  22. Rao, H.S., Mukherjee, A.: Artificial neural networks for predicting the macromechanical behaviour of ceramic-matrix composites. Comput. Mater. Sci. 5(4), 307–322 (1996). https://doi.org/10.1016/0927-0256(95)00002-X

    Article  Google Scholar 

  23. Bezerra, E.M., Ancelotti, A.C., Pardini, L.C., Rocco, J.A.F.F., Iha, K., Ribeiro, C.H.C.: Artificial neural networks applied to epoxy composites reinforced with carbon and E-glass fibers: analysis of the shear mechanical properties. Mater. Sci. Eng., A 464(1–2), 177–185 (2007). https://doi.org/10.1016/j.msea.2007.01.131

    Article  Google Scholar 

  24. Khan, S.M., Malik, S.A., Gull, N., Saleemi, S., Islam, A., Butt, M.T.Z.: Fabrication and modelling of the macro-mechanical properties of cross-ply laminated fibre-reinforced polymer composites using artificial neural network. Adv. Compos. Mater 28(4), 409–423 (2019). https://doi.org/10.1080/09243046.2019.1573448

    Article  Google Scholar 

  25. António, C.A.C., Hoffbauer, L.N.: Uncertainty assessment approach for composite structures based on global sensitivity indices. Compos. Struct. 99, 202–212 (2013). https://doi.org/10.1016/j.compstruct.2012.12.001

    Article  Google Scholar 

  26. Robin, M.G., Louise, G., Stephen, H., Ian, E., Adam, L.C., Thomas, J.M., David, E.J.A.: Micromechanical properties of vapour-exposed SiCf/BN/SiC ceramic-matrix composites. J. Eur. Ceram. Soc. 42(7), 3148–3155 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.02.022

    Article  Google Scholar 

  27. Zhang, S., Gao, X.G., Song, Y.D.: In situ strength model for continuous fibers and multi-scale modeling the fracture of C/SiC composites. Appl. Compos. Mater. 26(1), 357–370 (2019). https://doi.org/10.1007/s10443-018-9696-y

    Article  Google Scholar 

  28. Zhang, Y., Ping, X., Wang, C., Xiao, Z., Yang, J., Chen, M.: A new computational approach for three-dimensional singular stress analysis of interface voids. Acta Mech. 232(2), 639–660 (2021). https://doi.org/10.1007/s00707-020-02842-0

    Article  MathSciNet  Google Scholar 

  29. Fang, G., Xiguang, G., Song, Y.: XFEM analysis of crack propagation in fiber-reinforced ceramic matrix composites with different interphase thicknesses. Compos. Interfaces 27, 1–14 (2019). https://doi.org/10.1080/09276440.2019.1637195

    Article  Google Scholar 

  30. Yang, C., James, M.: Effect of irradiation swelling on the mechanical properties of unidirectional SiC/SiC composites: a numerical investigation at microstructural level. J. Nucl. Mater. 569, 153918 (2022). https://doi.org/10.1016/j.jnucmat.2022.153918

    Article  Google Scholar 

  31. Fang, G., Gao, X., Song, Y.: XFEM analysis of the effect of fiber volume fraction on crack propagation in fiber reinforced ceramic matrix composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing (2019) https://doi.org/10.1088/1757-899X/678/1/012027

  32. Zhou, L.-C., Chen, M., Liu, C., Wu, H.-A.: A multi-scale stochastic fracture model for characterizing the tensile behavior of 2D woven composites. Compos. Struct. (2018). https://doi.org/10.1016/J.COMPSTRUCT.2018.07.128

    Article  Google Scholar 

  33. Ha, S.K., Huang, Y., Han, H.H., Jin, K.K.: Micromechanics of failure for ultimate strength predictions of composite laminates. J. Compos. Mater. 44(20), 2347–2361 (2010). https://doi.org/10.1177/0021998310372464

    Article  Google Scholar 

  34. Omairey, S.L., Dunning, P.D., Sriramula, S.: Development of an ABAQUS plugin tool for periodic RVE homogenisation. Eng. Comput. 35, 567–577 (2019). https://doi.org/10.1016/0927-0256(95)00002-X

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science and Technology Major Project, (Y2019-I-0018-0017), State Key Laboratory of Mechanics and Control for Aerospace (Nanjing University of Aeronautics and Astronautics) (Grant No. MCMS-E-0521G01).

Funding

This work was funded by the National Science and Technology Major Project (Y2019-I-0018–0017), State Key Laboratory of Mechanics and Control for Aerospace (Nanjing University of Aeronautics and Astronautics) (Grant No. MCMS-E-0521G01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Mu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Mu, F. & Chuwei, Z. Prediction of tensile elastic modulus of SiC/SiC mini-composites with the artificial neural network. Acta Mech 234, 4733–4748 (2023). https://doi.org/10.1007/s00707-023-03640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03640-0

Navigation