Skip to main content
Log in

Nonlocal strain gradient model for thermal buckling analysis of functionally graded nanobeams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, a nonlocal strain gradient model for the buckling analysis of functionally graded Euler–Bernoulli beam subjected to thermo-mechanical loads is developed. The governing equations are derived by incorporating the effects of nonlocal and strain gradient parameters. Thermal properties over the cross section are graded using the power law. The resulting sixth-order differential equation is solved analytically for various boundary conditions. The effect of strain gradient and nonlocal parameters on the variation of critical buckling temperature under three different boundary conditions and three different thermal loading conditions is studied. The proposed model compares well with the existing literature in the limiting sense of no nonlocal and gradient effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Gopalakrishnan, S., Narendar, S.: Wave Propagation in Nanostructures. Springer International Publishing, Berlin (2013)

  3. Gupta, N., Gupta, S.M., Sharma, S.K.: Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 29(5), 419–447 (2019)

    Article  Google Scholar 

  4. Jung, M., Lee, Y., Hong, S.-G., Moon, J.: Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem. Concr. Res. 131, 106017 (2020)

    Article  Google Scholar 

  5. de Menezes, B.R.C., Rodrigues, K.F., da Silva Fonseca, B.C., Ribas, R.G., do Amaral Montanheiro, T.L., Thim, G.P.: Recent advances in the use of carbon nanotubes as smart biomaterials. J. Mater. Chem. B 7(9), 1343–1360 (2019)

    Article  Google Scholar 

  6. He, H., Pham-Huy, L.A., Dramou, P., Xiao, D., Zuo, P., Pham-Huy, C.: Carbon nanotubes: Applications in pharmacy and medicine. Biomed. Res. Int. 2013, 1–12 (2013)

    Google Scholar 

  7. Tan, C.W., Tan, K.H., Ong, Y.T., Mohamed, A.R., Zein, S.H.S., Tan, S.H.: Energy and environmental applications of carbon nanotubes. Environ. Chem. Lett. 10(3), 265–273 (2012)

    Article  Google Scholar 

  8. Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: A review. J. Environ. Sci. 25(7), 1263–1280 (2013)

    Article  Google Scholar 

  9. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  10. Liew, K.M., Pan, Z., Zhang, L.-W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Phys. Mech. Astron. 63(3), 1–17 (2020)

    Article  Google Scholar 

  11. Jha, D.K., Kant, T., Singh, R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  12. Esen, I., Daikh, A.A., Eltaher, M.A.: Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus, 136(4) (2021)

  13. Lu, L., Zhu, L., Guo, X., Zhao, J., Liu, G.: A nonlocal strain gradient shell model incorporating surface effects for vibration analysis of functionally graded cylindrical nanoshells. Appl. Math. Mech. 40(12), 1695–1722 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karami, B., Shahsavari, D., Janghorban, M., Li, L.: On the resonance of functionally graded nanoplates using bi-helmholtz nonlocal strain gradient theory. Int. J. Eng. Sci. 144, 103143 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arefi, M., Kiani, M., Rabczuk, T.: Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets. Compos. B Eng. 168, 320–333 (2019)

    Article  Google Scholar 

  16. Kröner, E.: Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 3, 731–742 (1967)

    Article  MATH  Google Scholar 

  17. Aifantis, E.C.: Gradient effects at macro, micro, and nano scales. J. Mech. Behav. Mater. 5(3), 355–375 (1994)

    Article  Google Scholar 

  18. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. Int. J. Solids Struct. 51(8), 1477–1508 (2003)

    MATH  Google Scholar 

  19. John, P., George, R.B., Richard, P.M.: Application of nonlocal continuuum models to nano technology. Int. J. Eng. Sci. 128, 305–312 (2003)

    Google Scholar 

  20. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  21. Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mindlin, R. D.: Micro-structure in Linear Elasticity. Technical report, Columbia Univ New York Dept of Civil Engineering and Engineering Mechanics (1963)

  23. Aifantis, E.C: On the microstructural origin of certain inelastic models (1984)

  24. Aifantis, E.C.: The physics of plastic deformation. Int. J. Plast 3(3), 211–247 (1987)

    Article  MATH  Google Scholar 

  25. Triantafyllidis, N., Aifantis, E.C.: A gradient approach to localization of deformation. i. Hyperelastic materials. J. Elast. 16(3), 225–237 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Aifantis, E.C.: On the role of gradients in the localization of deformation and fracture. Int. J. Eng. Sci. 30(10), 1279–1299 (1992)

    Article  MATH  Google Scholar 

  27. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48(13), 1962–1990 (2011)

    Article  Google Scholar 

  28. Xiao-Jian, X., Wang, X.-C., Zheng, M.-L., Ma, Z.: Bending and buckling of nonlocal strain gradient elastic beams. Compos. Struct. 160, 366–377 (2017)

    Article  Google Scholar 

  29. Li, L., Yujin, H.: Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int. J. Eng. Sci. 97, 84–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X., Li, L., Yujin, H., Ding, Z., Deng, W.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  31. Thai, C.H., Ferreira, A.J.M., Phung-Van, P.: A nonlocal strain gradient isogeometric model for free vibration and bending analyses of functionally graded plates. Compos. Struct. 251, 112634 (2020)

    Article  Google Scholar 

  32. Li, L., Yujin, H.: Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material. Int. J. Eng. Sci. 107, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lu, L., Guo, X., Zhao, J.: A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms. Int. J. Eng. Sci. 119, 265–277 (2017)

    Article  Google Scholar 

  34. Farajpour, A., Haeri Yazdi, M.R., Rastgoo, A., Mohammadi, M.: A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227(7), 1849–1867 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, L., Yujin, H., Ling, L.: Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory. Physica E 75, 118–124 (2016)

    Article  Google Scholar 

  36. Tang, Y., Liu, Y., Zhao, D.: Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model. Physica E 87, 301–307 (2017)

    Article  Google Scholar 

  37. Boyina, K., Piska, R.: Wave propagation analysis in viscoelastic Timoshenko nanobeams under surface and magnetic field effects based on nonlocal strain gradient theory. Appl. Math. Comput. 439, 127580 (2023)

    MathSciNet  MATH  Google Scholar 

  38. She, G.-L., Yan, K.-M., Zhang, Y.-L., Liu, H.-B., Ren, Y.-R.: Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory. Eur. Phys. J. Plus, 133(9) (2018)

  39. Şimşek, M.: Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory. Compos. Struct. 224, 111041 (2019)

    Article  Google Scholar 

  40. Karami, B., Janghorban, M., Rabczuk, T.: Dynamics of two-dimensional functionally graded tapered timoshenko nanobeam in thermal environment using nonlocal strain gradient theory. Compos. B Eng. 182, 107622 (2020)

    Article  Google Scholar 

  41. Rabczuk, T., Ren, H., Zhuang, X.: A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Comput. Mater. Continua 59(1), 31–55 (2019)

    Article  Google Scholar 

  42. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhuang, X., Guo, H., Alajlan, N., Zhu, H., Rabczuk, T.: Deep autoencoder based energy method for the bending, vibration, and buckling analysis of kirchhoff plates with transfer learning. Eur. J. Mech. A/Solids 87, 104225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  44. Guo, H., Zhuang, X., Rabczuk, T.: A deep collocation method for the bending analysis of kirchhoff plate. (2021). arXiv preprint arXiv:2102.02617

  45. Kiani, Y., Eslami, M.R.: Thermal buckling analysis of functionally graded material beams. Int. J. Mech. Mater. Des. 6(3), 229–238 (2010)

    Article  Google Scholar 

  46. Lanhe, W.: Thermal buckling of a simply supported moderately thick rectangular FGM plate. Compos. Struct. 64(2), 211–218 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Department of Science and Technology, Ministry of Science and Technology, India [Grant Number: DST/INSPIRE/04/2020/001476].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghu Piska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyina, K., Piska, R. & Natarajan, S. Nonlocal strain gradient model for thermal buckling analysis of functionally graded nanobeams. Acta Mech 234, 5053–5069 (2023). https://doi.org/10.1007/s00707-023-03637-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03637-9

Navigation