Skip to main content
Log in

Size-dependent free vibration of piezoelectric semiconductor plate

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the size-dependent free vibration of a piezoelectric semiconductor plate is investigated within the framework of the nonlocal theory and piezoelectric semiconductor theory. The displacement, electric potential and perturbation of electron concentration are provided based on the first-order shear deformation theory. The two-dimensional governing equations including the equations of motion, Gauss’s law and current continuity condition are obtained by introducing the plane stress assumption and integrating the three-dimensional governing equations along the thickness direction. The vibration of a simply supported piezoelectric semiconductor plate is achieved by solving the governing equations. Some numerical examples are presented to show the effect of the initial electron concentration, nonlocal parameter, plate thickness, length to thickness ratio and length to width ratio on the vibration of the piezoelectric semiconductor plate. The results indicate that the damping characteristic of the piezoelectric semiconductor plate can be effectively designed by adding the appropriate initial electron concentration. Also, both the nonlocal parameter and the geometric property have an important effect on the natural frequency and damping characteristic of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wang, Z.L.: Piezotronics and Piezo-Phototronics. Springer, Berlin (2012)

    Book  Google Scholar 

  2. Ren, C., Wang, K.F., Wang, B.L.: Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects. J. Appl. Phys. 128, 1–13 (2020)

    Article  Google Scholar 

  3. Sun, L., Zhang, Z.C., Gao, C.F., Zhang, C.L.: Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer. J. Appl. Phys. 129(24), 1–10 (2021)

    Article  Google Scholar 

  4. Yang, W.L., Hu, Y.T., Pan, E.N.: Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Appl. Math. Mech.-Engl. 41(6), 833–844 (2020)

    Article  MathSciNet  Google Scholar 

  5. Sladek, J., Sladek, V., Repka, M., Pan, E.N.: Size effect in piezoelectric semiconductor nanostructures. J. Int. Mat. Syst. Str. 33(11), 1351–1363 (2022)

    Article  Google Scholar 

  6. Zhao, M.H., Ma, Z.L., Lu, C.S., Zhang, Q.Y.: Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. Appl. Math. Mech-Engl. 42(5), 665–676 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fang, K., Li, P., Li, N., Liu, D.Z., Qian, Z.H., Kolesov, V., Kuznetsova, I.: Model and performance analysis of non-uniform piezoelectric semiconductor nanofibers. Appl. Math. Model. 104, 628–643 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, J.: A nonlocal continuum model for the piezopotential of two-dimensional semiconductors. J. Phys. D. Appl. Phys. 53, 045303 (2020)

    Article  Google Scholar 

  9. Zhao, M.H., Zhang, Q.Y., Fan, C.Y.: An efficient iteration approach for nonlinear boundary value problems in 2D piezoelectric semiconductors. Appl. Math. Model. 74, 170–183 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, N., Qian, Z.H., Yang, J.S.: Effects of edge and interior stresses on electrical behaviors of piezoelectric semiconductor films. Ferroelectrics 571(1), 96–108 (2021)

    Article  Google Scholar 

  11. Qu, Y.L., Jin, F., Yang, J.S.: Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate. Acta Mech. 232(11), 4533–4543 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luo, Y.X., Zhang, C.L., Chen, W.Q., Yang, J.S.: Piezotronic effect of a thin film with elastic and piezoelectric semiconductor layers under a static flexural loading. J. Appl. Mech.-T. ASME 86(5), 051003 (2019)

  13. Wang, G.L., Liu, J.X., Liu, X.L., Feng, W.J., Yang, J.S.: Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. J. Appl. Phys. 124(9), 094502 (2018)

    Article  Google Scholar 

  14. Yang, W.L., Hu, Y.T., Yang, J.S.: Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Mater. Res. Express 6(2), 025902 (2019)

    Article  Google Scholar 

  15. Liang, Y.X., Yang, W.L., Yang, J.S.: Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Acta Mech. Solida Sin. 32(6), 688–697 (2019)

    Article  Google Scholar 

  16. Yang, W.L., Liang, Y.X.: Typical transient effects in a piezoelectric semiconductor nanofiber under a suddenly applied axial time-dependent force. Appl. Math. Mech.-Engl. 42(8), 1095–1108 (2021)

    Article  MathSciNet  Google Scholar 

  17. Lu, H.H.H., Young, D.L., Sladek, J., Sladek, V.: Three-dimensional analysis for functionally graded piezoelectric semiconductors. J. Int. Mat. Syst. Str. 28(11), 1391–1406 (2017)

    Article  Google Scholar 

  18. Sladek, J., Sladek, V., Lu, H.H.H., Young, D.L.: The FEM analysis of FGM piezoelectric semiconductor problems. Compos. Struct. 163, 13–20 (2017)

    Article  Google Scholar 

  19. Dai, X.Y., Zhu, F., Qian, Z.H., Yang, J.S.: Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy 43, 22–28 (2018)

    Article  Google Scholar 

  20. Fang, K., Li, P., Qian, Z.H.: Static and dynamic analysis of a piezoelectric semiconductor cantilever under consideration of flexoelectricity and strain gradient elasticity. Acta Mech. Solida Sin. 34(5), 673–686 (2021)

    Article  Google Scholar 

  21. Zhao, M.H., Niu, J.N., Lu, C.S., Wang, B.B., Fan, C.Y.: Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires. J. Appl. Phys. 129(16), 1–11 (2021)

    Article  Google Scholar 

  22. Fang, X.Q., Ma, H.W., Zhu, C.S.: Non-local multi-fields coupling response of a piezoelectric semiconductor nano-fiber under shear force. Mech. Adv. Mater. Struc. DOI: https://doi.org/10.1080/15376494.2022.2158503.

  23. Zhang, Z.C., Laing, C., Wang, Y., Xu, R.Q., Gao, C.F., Zhang, C.L.: Static bending and vibration analysis of piezoelectric semiconductor beams considering surface effects. J. Vib. Eng. Technol. 9(7), 1789–1800 (2021)

    Article  Google Scholar 

  24. Wauer, J., Suherman, S.: Thickness vibrations of a piezo-semiconducting plate layer. Int. J. Eng. Sci. 35(15), 1387–1404 (1997)

    Article  MATH  Google Scholar 

  25. Li, P., Jin, F., Yang, J.S.: Effects of semiconduction on electromechanical energy conversion in piezoelectrics. Smart Mater. Struct. 24(2), 025021 (2015)

    Article  Google Scholar 

  26. Ju, S., Zhang, H.F., Yang, J.S.: Effects of semiconduction on thickness-extensional modes of piezoelectric resonators. IEEE T. Ultrason. Ferr. 9(2), 911–912 (2022)

    Article  Google Scholar 

  27. Li, M.G., Zhang, Q.Y., Wang, B.B., Zhao, M.H.: Analysis of flexural vibrations of a piezoelectric semiconductor nanoplate driven by a time-harmonic force. Materials 14(14), 3926 (2021)

    Article  Google Scholar 

  28. Guo, J.Y., Nie, G.Q., Liu, J.X., Zhang, L.L.: Free vibration of a piezoelectric semiconductor plate. Eur. J. Mech. A-Solid. 95, 104647 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  Google Scholar 

  30. Zhang, C.L., Chen, W.Q., Zhang, C.: Two-dimensional theory of piezoelectric plates considering surface effect. Eur. J. Mech. A-Solid. 41, 50–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, C.L., Zhu, J., Chen, W.Q., Zhang, C.: Two-dimensional theory of piezoelectric shells considering surface effect. Eur. J. Mech. A-Solid. 43, 109–117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Z.C., Liang, C., Kong, D.J., Xiao, Z.G., Zhang, C.L., Chen, W.Q.: Dynamic buckling and free bending vibration of axially compressed piezoelectric semiconductor rod with surface effect. Int. J. Mech. Sci. 238, 107823 (2023)

    Article  Google Scholar 

  33. Ke, L.L., Liu, C., Wang, Y.S.: Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions. Physica E 66(1), 93–106 (2015)

    Article  Google Scholar 

  34. Hosseini-Hashemi, S., Zare, M., Nazemnezhad, R.: An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity. Compos. Struct. 100, 290–299 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 12172236, 12202289 and U21A20430), the Science and Technology Research Project of Hebei Education Department, China (No. QN2022083), and the funded project for Innovative Graduates in Shijiazhuang Tiedao University, China (YC2023030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-song Zhu or Xue-qian Fang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Ql., Zhu, Cs., Han, Bh. et al. Size-dependent free vibration of piezoelectric semiconductor plate. Acta Mech 234, 4821–4836 (2023). https://doi.org/10.1007/s00707-023-03632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03632-0

Navigation