Skip to main content
Log in

Stability of plane Poiseuille and Couette flows of Navier–Stokes–Voigt fluid

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The temporal stability of plane Poiseuille and Couette flows for a Navier–Stokes–Voigt type of viscoelastic fluid is examined. The primary unidirectional flow is between two infinite rigid parallel plates, which are either fixed or in relative motion. To investigate the instability of the basic flow, a numerical solution of the resulting eigenvalue problem is performed. Despite the base flow remains to be unaltered, the stability properties differ from those of a Newtonian fluid. In the case of plane Poiseuille flow, two values of the Reynolds number are found to be needed to specify the linear instability criteria owing to the existence of closed neutral stability curves and also the instability emerges only in a certain range of the Kelvin–Voigt parameter \(\Lambda\). To the contrary, instability occurs for all nonzero values of \(\Lambda\) in the case of plane Couette flow and a single critical value of the Reynolds number is adequate to discuss the stability/instability of fluid flow due to the parabolic nature of the neutral stability curves. The sensitivity of the Kelvin–Voigt parameter is clearly discerned on the stability of both types of flows. The variations of streamlines at the dominant mode of instability are analyzed in comprehending the underlying instability mechanism and shedding light on the secondary flow pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statements

The data that support the findings of this study are available within the article.

References

  1. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. M'F Orr, W.: The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid; Part II: a viscous liquid. Proc. R. Irish Acad. A 27, 9–68 and 69–138 (1907)

  3. Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In: Proceedings of the 4th International Congress of Mathematicians, Rome, Vol. III, pp. 116–124 (1908)

  4. Lock, R.C.: The stability of the flow of an electrically conducting fluid between parallel planes under a transverse magnetic field. Proc. R. Soc. Lond. A. 233, 105–125 (1955)

    MathSciNet  Google Scholar 

  5. Kakutani, T.: The hydromagnetic stability of the modified Plane Couette flow in the presence of a transverse magnetic field. J. Phys. Soc. Jpn. 19, 1041–1057 (1964)

    Google Scholar 

  6. Fransson, J.H.M., Alfredsson, P.H.: On the hydrodynamic stability of channel flow with cross flow. Phys. Fluids 15, 436–441 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Shankar, B.M., Shivakumara, I.S.: Benchmark solution for the stability of plane Couette flow with net throughflow. Sci. Rep. 11, 10901 (2021)

    Google Scholar 

  8. Falsaperla, P., Mulone, G., Perrone, C.: Energy stability of plane Couette and Poiseuille flows: a conjecture. Eur. J. Mech. B/Fluids 93, 93–100 (2022)

    MathSciNet  MATH  Google Scholar 

  9. Nield, D.A.: The stability of flow in a channel or duct occupied by a porous medium. Int. J. Heat Mass Transf. 46, 4351–4354 (2003)

    MATH  Google Scholar 

  10. Shankar, B.M., Shivakumara, I.S., Kumar, J.: Benchmark solution for the hydrodynamic stability of plane porous-Couette flow. Phys. Fluids 32, 104104 (2020)

    Google Scholar 

  11. Chun, D.H., Schwarz, W.H.: Stability of a plane Poiseuille flow of a second-order fluid. Phys. Fluids 11, 5–9 (1968)

    Google Scholar 

  12. Porteous, K.C., Denn, M.M.: Linear stability of plane Poiseuille flow of viscoelastic liquids. Trans. Soc. Rheol. 16, 295–308 (1972)

    MATH  Google Scholar 

  13. Kundu, P.K.: Small disturbance stability of plane Poiseuille flow of Oldroyd fluid. Phys. Fluids 15, 1207–1212 (1972)

    MATH  Google Scholar 

  14. Jain, J.K., Stokes, V.K.: Effects of couple stresses on the stability of plane Poiseuille flow. Phys. Fluids 15, 977–980 (1972)

    MATH  Google Scholar 

  15. Kundu, P.K.: Investigation of stability of plane Couette flow of a second-order fluid by the energy method. Trans. Soc. Rheol. 18, 527–539 (1974)

    MATH  Google Scholar 

  16. Ho, T.C., Denn, M.M.: Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newtonian Fluid Mech. 3, 179–195 (1977)

    MATH  Google Scholar 

  17. Lee, K.C., Finlayson, B.A.: Stability of plane Poiseuille and Couette flow of a Maxwell fluid. J. Non-Newtonian Fluid Mech. 21, 65–78 (1986)

    MATH  Google Scholar 

  18. Renardy, M., Renardy, Y.: Linear stability of plane Couette flow of an upper convected Maxwell fluid. J. Non-Newtonian Fluid Mech. 22, 23–33 (1986)

    MATH  Google Scholar 

  19. Sureshkumar, R., Beris, A.N.: Linear stability analysis of viscoelastic Poiseuille flow using an Arnoldi-based orthogonalization algorithm. J. Non-Newton. Fluid Mech. 56, 151–182 (1995)

    Google Scholar 

  20. Sadanandan, B., Sureshkumar, R.: Viscoelastic effects on the stability of wall-bounded shear flows. Phys. Fluids 14, 41–48 (2002)

    MATH  Google Scholar 

  21. Chikkadi, V., Sameen, A., Govindarajan, R.: Preventing transition to turbulence: a viscosity stratification does not always help. Phys. Rev. Lett. 95, 264504 (2005)

    Google Scholar 

  22. Eldabe, N.T.M., El-Sabbagh, M.F., El-Sayed, M.A.-S.: Hydromagnetic stability of plane Poiseuille and Couette flow of viscoelastic fluid. Fluid Dyn. Res. 38, 699–715 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Nouar, C., Bottaro, A., Brancher, J.P.: Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids. J. Fluid Mech. 592, 177–194 (2007)

    MATH  Google Scholar 

  24. Liu, R., Liu, Q.S.: Non-modal instability in plane Couette flow of a power-law fluid. J. Fluid Mech. 676, 145–171 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Chaudhary, I., Garg, P., Shankar, V., Subramanian, G.: Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow. J. Fluid Mech. 881, 119–163 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Ortín, J.: Stokes layers in oscillatory flows of viscoelastic fluids. Philos. Trans. R. Soc. A 378, 20190521 (2020)

    MathSciNet  MATH  Google Scholar 

  27. Khalid, M., Chaudhary, I., Garg, P., Shankar, V., Subramanian, G.: The centre-mode instability of viscoelastic plane Poiseuille flow. J. Fluid Mech. 915, A43 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Berselli, L.C., Bisconti, L.: On the structural stability of the Euler–Voigt and Navier–Stokes–Voigt models. Nonlinear Anal. Theory Methods Appl. 75, 117–130 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Layton, W.J., Rebholz, L.G.: On relaxation times in the Navier–Stokes–Voigt model. Int. J. Comput. Fluid Dyn. 27, 184–187 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Chiriţăand, S., Zampoli, V.: On the forward and backward in time problems in the Kelvin–Voigt thermoelastic materials. Mech. Res. Comm. 68, 25–30 (2015)

    Google Scholar 

  31. Oskolkov, A.P.: Initial-boundary value problems for the equations of Kelvin–Voigt fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 179, 137–182 (1989)

    MATH  Google Scholar 

  32. Oskolkov, A.P.: Nonlocal problems for the equations of motion of Kelvin–Voigt fluids. J. Math. Sci. 75, 2058–2078 (1995)

    MathSciNet  Google Scholar 

  33. Oskolkov, A.P., Shadiev, R.: Towards a theory of global solvability on [0, ∞) of initial-boundary value problems for the equations of motion of Oldroyd and Kelvin–Voight fluids. J. Math. Sci. 68, 240–253 (1994)

    MathSciNet  MATH  Google Scholar 

  34. Straughan, B.: Competitive double diffusive convection in a Kelvin–Voigt fluid of orderone. Appl. Math. Optim. 84(Suppl 1), 631–650 (2021)

    MathSciNet  Google Scholar 

  35. Straughan, B.: Thermosolutal convection with a Navier–Stokes–Voigt fluid. Appl. Math. Optim. 84, 2587–2599 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Straughan, B.: Instability thresholds for thermal convection in a Kelvin-Voigt fluid of variable order. Rend. Circ. Mat. Palermo II. Ser. 71, 187–206 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Shankar, B.M., Shivakumara, I.S.: Stability of natural convection in a vertical layer of Navier–Stokes–Voigt fluid. Int. Commun. Heat Mass Transfer 144, 106783 (2023)

    Google Scholar 

  38. Greco, R., Marano, G.C.: Identification of parameters of Maxwell and Kelvin-Voigt generalized models for fluid viscous dampers. J. Vibr. Control 21, 260–274 (2015)

    Google Scholar 

  39. Lewandowski, R., Chorążyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modelling viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Google Scholar 

  40. Jakeman, E., Hurle, D.T.J.: Thermal oscillations and their effect on solidification processes. Rev. Phys. Technol. 3, 3–30 (1972)

    Google Scholar 

  41. Larson, R.G.: Instabilities in viscoelastic flows. Rheol. Acta 31, 213–263 (1992)

    Google Scholar 

  42. Squire, H.B.: On the stability for three-dimensional disturbances of viscous fluid between parallel walls. Proc. R. Soc. Lond. A 142, 621–628 (1933)

    MATH  Google Scholar 

  43. Orszag, S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    MATH  Google Scholar 

  44. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, Berlin (2001)

    MATH  Google Scholar 

  45. Dongarra, J.J., Straughan, B., Walker, D.W.: Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Appl. Numer. Math. 22, 399–434 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are indebted to two anonymous referees for their valuable comments which have improved the manuscript.

Funding

Funding was provided by PES University (Grant No. PESUIRF/Math/2020/11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Shankar.

Ethics declarations

Conflict of interest

The authors have no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankar, B.M., Shivakumara, I.S. Stability of plane Poiseuille and Couette flows of Navier–Stokes–Voigt fluid. Acta Mech 234, 4589–4609 (2023). https://doi.org/10.1007/s00707-023-03624-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03624-0

Navigation