Skip to main content
Log in

Drag reduction via polymer solute: 3D numerical simulations of pipe flow

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The mechanism of drag reduction via polymer additives is long debated in the literature. This journal published a paper (Volokh in Acta Mech 229(10):4295–4301, 2018), in which the drag reduction was explained based on the Navier–Stokes model enhanced with the viscous strength. This explanation was limited by a qualitative consideration of the onset of material instability in the laminar pipe flow. In the present work, we use the theoretical setting of Volokh (2018) in 3D numerical simulations of the realistic pipe flow where material instabilities develop into turbulence. We observe in the simulations that the addition of the polymer solute suppresses the chaotic turbulent motion, indeed, in accordance with the experimental observations of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Volokh, K.: An explanation of the drag reduction via polymer solute. Acta Mech. 229(10), 4295–4301 (2018)

    Article  MathSciNet  Google Scholar 

  2. Toms, B.A.: Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: Proceedings of the First International Congress on Rheology, vol. 2, pp. 135–141 (1949)

  3. Nadolink, R.H., Haigh, W.W.: Bibliography on skin friction reduction with polymers and other boundary-layer additives. Appl. Mech. Rev. 47, 351–460 (1995)

    Article  Google Scholar 

  4. Bewersdorff, H.-W.: Drag Reduction of Turbulent Flows by Additives. Kluwer, Philadelphia (1995)

    MATH  Google Scholar 

  5. Utomo, A., Riadi, A.: Drag reduction using additives in smooth circular pipes based on experimental approach. Processes 9(9), 1596 (2021)

    Article  Google Scholar 

  6. Gyr, A., Bewersdorff, H.-W.: Drag Reduction of Turbulent Flows by Additives, vol. 32. Springer, Berlin (2013)

    MATH  Google Scholar 

  7. Cadot, O., Bonn, D., Douady, S.: Turbulent drag reduction in a closed flow system: boundary layer versus bulk effects. Phys. Fluids 10(2), 426–436 (1998)

    Article  Google Scholar 

  8. Dubief, Y., et al.: On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271–280 (2004)

    Article  MATH  Google Scholar 

  9. Gupta, V., Sureshkumar, R., Khomami, B.: Polymer chain dynamics in Newtonian and viscoelastic turbulent channel flows. Phys. Fluids 16(5), 1546–1566 (2004)

    Article  MATH  Google Scholar 

  10. Liberzon, A., Guala, M., Lüthi, B., Kinzelbach, W., Tsinober, A.: Turbulence in dilute polymer solutions. Phys. Fluids 17(3), 031707 (2005)

    Article  MATH  Google Scholar 

  11. Ptasinski, P., et al.: Turbulent channel flow near maximum drag reduction: simulations, experiments and mechanisms. J. Fluid Mech. 490, 251–291 (2003)

    Article  MATH  Google Scholar 

  12. Leonov, A.I., Prokunin, A.: Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids. Springer, Berlin (2012)

    Google Scholar 

  13. Boelens, A., Muthukumar, M.: Rotational relaxation time as unifying time scale for polymer and fiber drag reduction. Phys. Rev. E 93(5), 052503 (2016)

    Article  Google Scholar 

  14. Xi, L., Bai, X.: Marginal turbulent state of viscoelastic fluids: a polymer drag reduction perspective. Phys. Rev. E 93(4), 043118 (2016)

    Article  Google Scholar 

  15. Oldroyd, J.G.: Proceedings 1st International Congress on Rheology, vol. 2. North-Holland (1949)

  16. Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  17. De Gennes, P.-G.: Introduction to Polymer Dynamics. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  18. L’vov, V.S., Pomyalov, A., Procaccia, I., Tiberkevich, V.: Drag reduction by polymers in wall bounded turbulence. Phys. Rev. Lett. 92(24), 244503 (2004)

    Article  Google Scholar 

  19. Procaccia, I., L’vov, V.S., Benzi, R.: Colloquium: theory of drag reduction by polymers in wall-bounded turbulence. Rev. Mod. Phys. 80(1), 225 (2008)

    Article  Google Scholar 

  20. Lumley, J.L.: Drag reduction by additives. Annu. Rev. Fluid Mech. 1, 367–384 (1969)

    Article  Google Scholar 

  21. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)

    MATH  Google Scholar 

  22. Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. 186, 123–164 (1895)

    Article  MATH  Google Scholar 

  23. Faisst, H., Eckhardt, B.: Sensitive dependence on initial conditions in transition to turbulence in pipe flow. J. Fluid Mech. 504, 343–352 (2004)

    Article  MATH  Google Scholar 

  24. Eckhardt, B.: Turbulence transition in pipe flow: some open questions. Nonlinearity 21(1), T1 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Eckhardt, B.: Introduction. Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367(1888), 449–455 (2009)

  26. Avila, K., et al.: The onset of turbulence in pipe flow. Science 333(6039), 192–196 (2011)

    Article  MATH  Google Scholar 

  27. Romanov, V.A.: Stability of plane-parallel Couette flow. Funct. Anal. Appl. 7(2), 137–146 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  28. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Elsevier, Amsterdam (2013)

    Google Scholar 

  29. Peixinho, J., Mullin, T.: Decay of turbulence in pipe flow. Phys. Rev. Lett. 96(9), 094501 (2006)

    Article  Google Scholar 

  30. Wygnanski, I.J., Champagne, F.: On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59(2), 281–335 (1973)

    Article  Google Scholar 

  31. Volokh, K.: An investigation into the stability of a shear thinning fluid. Int. J. Eng. Sci. 47(5–6), 740–743 (2009)

    Article  Google Scholar 

  32. Volokh, K.: Navier–Stokes model with viscous strength. Comput. Model. Eng. Sci. 92, 87–101 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Raghavan, B., Ostoja-Starzewski, M.: Shear-thinning of molecular fluids in Couette flow. Phys. Fluids 29, 023103 (2017)

    Article  Google Scholar 

  34. Lahiri, S.K., Volokh, K.Y.: Transition from laminar to turbulent pipe flow as a process of growing material instabilities. Submitted

  35. ANSYS: ANSYS Fluent Theory Guide 15.0. ANSYS, Canonsburg (2013)

  36. Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  37. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israel Science Foundation (ISF-394/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptarshi Kumar Lahiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, S.K., Volokh, K. Drag reduction via polymer solute: 3D numerical simulations of pipe flow. Acta Mech 234, 4523–4533 (2023). https://doi.org/10.1007/s00707-023-03623-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03623-1

Navigation