Skip to main content
Log in

Vibration characteristics and shape optimization of FG-GPLRC cylindrical shell with magneto-electro-elastic face sheets

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the effects of various geometrical parameters, materials, and boundary conditions on the vibrations of a smart cylindrical sandwich shell. The study also aimed to use the bees algorithm to maximize the natural frequencies based on the geometrical and material parameters of the smart sandwich shell. The structure of the shell consists of two outer layers of magneto-electro-elastic (MEE) and a middle layer of functionally graded graphene platelets reinforced composite (FG-GPLRC). The material properties of the MEE face sheets depend on the volume fraction of the piezoelectric and piezo-magnetic phases. The FG-GPLRC core layer is a multilayer isotropic polymer material reinforced by GPLs that are functionally graded and distributed in each layer. The shell is simultaneously subjected to external pressure and thermo-magneto-electro loads. Reddy's higher-order shear deformation shell theory was used to derive the basic equations, along with the relationships between deflection amplitude and time. The natural frequencies were obtained using Galerkin and Runge–Kutta methods, and the Budiansky–Roth standard was employed to determine the critical dynamic buckling load. The results of the study are discussed through parametric studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cao, W., Cudney, H.H., Waser, R.: Smart materials and structures. Proc. Natl. Acad. Sci. U.S.A. 96(15), 8330–8331 (1999). https://doi.org/10.1073/pnas.96.15.8330

    Article  Google Scholar 

  2. Rafee, M., Nitzsche, F., Labrosse, M.R.: Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: nonlinear bending, thermal postbuckling and large amplitude vibration. Int. J. Non Linear Mech. 103, 104–112 (2018)

    Article  Google Scholar 

  3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. Van den Boomgaard, J., Terrell, D., Born, R., Giller, H.: An in situ grown eutectic magneto-electric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Article  Google Scholar 

  5. Li, L., Hu, Y.: Critical flow velocity of fluid-conveying magneto-electro-elastic pipe resting on an elastic foundation. Int. J. Mech. Sci. 119, 273–282 (2016)

    Article  Google Scholar 

  6. Liu, H., Lv, Z.: Uncertain material properties on wave dispersion behaviors of smart magneto-electro-elastic nanobeams. Compos. Struct. 202, 615–624 (2018)

    Article  Google Scholar 

  7. Vinyas, M.: Porosity effect on the nonlinear deflection of functionally graded magneto-electro-elastic smart shells under combined loading. Mech. Adv. Mater. Struct. 29(19), 15 (2022). https://doi.org/10.1080/15376494.2021.1875086

    Article  Google Scholar 

  8. Vinyas, M., Kattimani, S.C.: Static behavior of thermally loaded multilayered magneto-electro-elastic beam. Struct. Eng. Mech. 63(4), 481–495 (2017). https://doi.org/10.12989/sem.2017.63.4.481

    Article  Google Scholar 

  9. Keun-Young, S., Jin-Yong, H., Jyongsik, J.: Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. Chem. Commun. 47, 8527 (2011)

    Article  Google Scholar 

  10. Battista, L., Mecozzi, L., Coppola, S., Vespini, V., Grilli, S., Ferraro, P.: Graphene and carbon black nano-composite polymer absorbers for a pyro-electric solar energy harvesting device based on LiNbO3 crystals. Appl. Energy 136, 357–362 (2014)

    Article  Google Scholar 

  11. Yong, Z., Yan, Z., Jiang, Y.: Investigate the interface structure and growth mechanism of high quality ZnO films grown on multilayer graphene layers. Appl. Surf. Sci. 301, 391–395 (2014)

    Article  Google Scholar 

  12. Zhang, F., Wu, S., Peng, S., Sha, Z., Wang, C.H.: Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors. Compos. Sci. Technol. 172, 7–16 (2019)

    Article  Google Scholar 

  13. Liu, H., Zheng, L.: Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nano-film integrated with graphene layers. Thin Walled Struct. 151, 106749 (2020)

    Article  Google Scholar 

  14. Asemi, S.R., Farajpour, A.: Vibration characteristics of double-piezoelectric-nanoplate-systems. Micro Nano Lett. 9(4), 280–285 (2014)

    Article  Google Scholar 

  15. Vinyas, M., Harursampath, D., Kattimani, S.C.: Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using reddy’s third order shear deformation theory. Struct. Eng. Mech. 73(6), 667–684 (2020)

    Google Scholar 

  16. Vinyas, M.: On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electromagnetic conditions using HSDT. Compos. Struct. 240, 112044 (2020)

    Article  Google Scholar 

  17. Kattimani, S.C., Ray, M.C.: Active control of large amplitude vibrations of smart magneto–electro–elastic doubly curved shells. Int J Mech Mater Des 10, 351–378 (2014). https://doi.org/10.1007/s10999-014-9252-3

    Article  Google Scholar 

  18. Qu, Y.L., Li, P., Zhang, G.Y., Jin, F., Gao, X.-L.: A microstructure-dependent anisotropic magneto-electroelastic Mindlin plate model based on an extended modified couple stress theory. Acta Mech 231, 4323–4350 (2020). https://doi.org/10.1007/s00707-020-02745-0

    Article  MathSciNet  MATH  Google Scholar 

  19. Sobhy, M.: Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly curved shallow shells with piezo-electro-magnetic faces. Compos. Struct. (2018). https://doi.org/10.1016/J.CompStruct.2018.07.056

    Article  Google Scholar 

  20. Dat, N.D., Quan, T.Q., Vinyas, M., Duc, N.D.: Analytical solutions for nonlinear magneto-electro-elastic vibration of smart sandwich plate with carbon nanotube reinforced nanocomposite core in hygrothermal environment. Int. J. Mech. Sci. (2020). https://doi.org/10.1016/j.ijmecsci.2020.105906

    Article  Google Scholar 

  21. Dat, N.D., Quan, T.Q., Duc, N.D.: Vibration analysis of auxetic laminated plate with magneto-electro-elastic face sheets subjected to blast loading. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114925

    Article  Google Scholar 

  22. Zhu, S., Sun, J., Xu, X.: Post-buckling analysis of magneto-electro-elastic composite cylindrical shells subjected to multi-field coupled loadings. Compos. Struct. (2021). https://doi.org/10.1016/j.compstruct.2021.114061

    Article  Google Scholar 

  23. Zhao, Y., Wang, X., Zhao, G., Markert, B., Zhang, S.: Large deflections of magneto-electro-elastic cylindrical shells reinforced with functionally graded carbon nanotubes. Mech. of Adv. Mat. Str. (2023). https://doi.org/10.1080/15376494.2022.2158507

    Article  Google Scholar 

  24. Vinyas, M., Harursampath, D.A., Kattimani, S.C.: On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electromagnetic conditions using higher order finite element methods. Def. Technol. 17(1), 287–303 (2021)

    Article  Google Scholar 

  25. Vinyas, M.: Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin Walled Struct. (2022). https://doi.org/10.1016/j.tws.2022.109547

    Article  Google Scholar 

  26. Vinyas, M., Sathiskumar, A.P.: FEM-ANN approach to predict nonlinear pyro-coupled deflection of sandwich plates with agglomerated porous nanocomposite core and piezo-magneto-elastic facings in thermal environment. Mech Adv Mater Struct (2023). https://doi.org/10.1080/15376494.2023.2201927

    Article  Google Scholar 

  27. Vinyas, M.: Artificial neural network (ANN) based investigation on the static behaviour of piezo-magneto-thermo-elastic nanocomposite sandwich plate with CNT agglomeration and porosity. Int. J. Non-Linear Mech. 153, 104406 (2023). https://doi.org/10.1016/j.ijnonlinmec.2023.104406

    Article  Google Scholar 

  28. Vinyas, M., Arjun, S.M.: Agglomeration effects of CNTs on the energy harvesting performance of multifield interactive magneto-electro-elastic/nanocomposite unimorph smart beam. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2144886

    Article  Google Scholar 

  29. Vinyas, M.: Active control of nonlinear coupled transient vibrations of multifunctional sandwich plates with agglomerated FG-CNTs core/magneto-electro-elastic facesheets. Thin Walled Structs 179, 109547 (2022). https://doi.org/10.1016/j.tws.2022.109547

    Article  Google Scholar 

  30. Vinyas, M.: Integrated effects of auxeticity and pyro-coupling on the nonlinear static behaviour of magneto-electro-elastic sandwich plates subjected to multi-field interactive loads. Proc Inst Mech Eng Part C J Mech Eng Sci (2023). https://doi.org/10.1177/095440622211493

    Article  Google Scholar 

  31. Vinyas, M.: Nonlinear free vibration of multifunctional sandwich plates with auxetic core and magneto-electro-elastic facesheets of different micro-topological textures: FE approach. Mech. Adv. Mater. Struct. 29(27), 6266–6287 (2022). https://doi.org/10.1080/15376494.2021.1974619

    Article  Google Scholar 

  32. Quang, V.D., Quan, T.Q., Tran, P.: Static buckling analysis and geometrical optimization of magneto-electro-elastic sandwich plate with auxetic honeycomb core. Thin-Walled Struct. 173, 108935 (2022)

    Article  Google Scholar 

  33. Pham, T.D., Castellani, M.: The bees algorithm: modelling foraging behavior to solve continuous optimization problems. Proc. Inst. Mech. Eng. Part. C J. Mech. Eng. Sci. 223, 2919–2938 (2009)

    Article  Google Scholar 

  34. Rehman, N., Uzair, M., Allauddin, U.: An optical-energy model for optimizing the geometrical layout of solar photovoltaic arrays in a constrained field. Renew. Energy 149, 55–65 (2020). https://doi.org/10.1016/j.renene.2019.12.040

    Article  Google Scholar 

  35. Namvar, A.R., Vosoughi, A.R.: Design optimization of moderately thick hexagonal honeycomb sandwich plate with modified multi-objective particle swarm optimization by genetic algorithm (MOPSOGA). Compos. Struct. 252, 112626 (2020)

    Article  Google Scholar 

  36. Chen, X., Ding, H., Shao, W.: Adaptive data-driven collaborative optimization of both geometric and loaded contact mechanical performances of non-orthogonal duplex helical face-milling spiral bevel and hypoid gears. Mech. Mach. Theory 154, 104028 (2020). https://doi.org/10.1016/j.mechmachtheory.2020.104028

    Article  Google Scholar 

  37. Ibrahim, D.S., Feng, Y., Shen, X., Sharif, U., Umar, A.A.: On geometrical configurations of vibration-driven piezoelectric energy harvesters for optimum energy transduction: a critical review. Mech. of Adv. Mat. Str. (2022). https://doi.org/10.1080/15376494.2022.2031357

    Article  Google Scholar 

  38. Ling, W., Zhou, W., Liu, C., Zhou, F., Yuan, D., Huang, J.: Structure and geometric dimension optimization of interlaced microchannel for heat transfer performance enhancement. Appl. Therm. Eng. 170, 115011 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115011

    Article  Google Scholar 

  39. Bahiraei, M., Rahimi, Z., Nazari, F.: A combined multi-criterion optimization to determine optimum geometrical parameters for flow of an ecofriendly graphenebased nanofluid inside tube enhanced with twisted conical strip inserts. Powder Technol. 377, 336–349 (2021). https://doi.org/10.1016/j.powtec.2020.08.044

    Article  Google Scholar 

  40. Meng, Z., Yang, G., Wang, Q., Wang, X., Li, Q.: Reliability-based topology optimization of vibrating structures with frequency constraints. Int. J. Mech. Mater. Des. (2023). https://doi.org/10.1007/s10999-022-09637-2

    Article  Google Scholar 

  41. Mahabadi, R.K., Pazhooh, M.D., Shakeri, M.: On the free vibration and design optimization of a shape memory alloy hybrid laminated composite plate. Acta Mech. 232, 323–343 (2021). https://doi.org/10.1007/s00707-020-02824-2

    Article  MathSciNet  MATH  Google Scholar 

  42. Rodrigues, P.M., Biserni, C., de Escobar, C.C., Rocha, L.A.O., Isoldi, L.A., dos Santos, E.D.: Geometric optimization of a lid-driven cavity with two rectangular intrusions under mixed convection heat transfer: A numerical investigation motivated by constructal design. Int. Commun. Heat. Mass. Transf. 117, 104759 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104759

    Article  Google Scholar 

  43. Liu, H., Hu, M., Jiao, J., Li, Z.: Geometric optimization of aerogel composites for high temperature thermal insulation applications. J. Non. Cryst. Solids 547, 120306 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120306

    Article  Google Scholar 

  44. Lisbôa, T.V., Geiger, F.P., Marczak, R.J.: Decomposition method and regularized Newton’s method applied to unconstrained optimization: laminated thin plates fiber orientation. J. Eng. Mech. (2019). https://doi.org/10.1061/(ASCE)EM.1943-7889.0001615

    Article  Google Scholar 

  45. Jing, Z., Sun, Q., Zhang, Y., Liang, K.: Buckaling optimization of composite rectangular plates by sequential permutation search with bending-twisting correction. Appl. Math. Model. 100, 751–779 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tu, T.M., Anh, P.H., Loi, N.V., Tuan, T.A.: Optimization of stiffeners for maximum fundamental frequency of cross-ply laminated cylindrical panels using social group optimization and smeared stiffener method. Thin-Walled Struct. 120, 172–179 (2017)

    Article  Google Scholar 

  47. Innami, M., Honda, S., Sasaki, K., Narita, Y.: Analysis and optimization for vibration of laminated rectangular plates with blended layers. Compos. Struct. 274, 114400 (2021)

    Article  Google Scholar 

  48. Wang, D.: Sensitivity analysis and shape optimization of a hole in a vibrating rectangular plate for eigenfrequency maximization. J. Eng. Mech. (2012). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000376

    Article  Google Scholar 

  49. Anh, V.M., Quan, T.Q., Tran, P.: Nonlinear vibration and geometric optimization of nanocomposite multilayer organic solar cell under wind loading. Thin-Walled Struct. 158, 107199 (2021)

    Article  Google Scholar 

  50. Dong, Y., Li, Y., Li, X., Yang, J.: Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers. Appl. Math. Model. 82, 252–270 (2020). https://doi.org/10.1016/j.apm.2020.01.054

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019)

    Article  Google Scholar 

  52. Wang, Y., Wu, D.: Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp. Sci Technol. 66, 83–91 (2017)

    Article  Google Scholar 

  53. Reddy, J.N., Liu, C.F.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985)

    Article  MATH  Google Scholar 

  54. Duc, N.D.: Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy’s third-order shear deformation shell theory. Eur. J. Mech. A/Solids 58, 10–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Duc, N.D., Dat, N.D., Anh, V.T.T., Giang, V.D., Thinh, P.N.: Effects of the magneto-electro-elastic layer on the CNTRC cylindrical shell. Arch. Appl. Mech. (2022). https://doi.org/10.1007/s00419-022-02310-2

    Article  Google Scholar 

Download references

Funding

This study was carried out under the research project QG.22.66 «Stability analysis and structure optimization of the sandwich smart nano-composite structure» of Vietnam National University, Hanoi. Ngo Dinh Dat was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), VINIF.2022.TS021. The authors sincerely thank these supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Dinh Duc.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could effects the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{aligned} \left( {\widetilde{{A_{mn} }},\,\,\widetilde{{B_{mn} }},\,\,\widetilde{{D_{mn} }},\,\,\widetilde{{E_{mn} }},\,\,\widetilde{{F_{mn} }},\,\widetilde{{\,H_{mn} }}} \right) & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{C_{mn} }} B\,{\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{mn}^{c} B\,{\text{d}}z\,\,\,\,} \\ & \quad + \int\limits_{{0.5h_{c} }}^{{0.5h_{c} + h_{f} }} {\overline{{C_{mn} }} B\,{\text{d}}z,\,\,\,\,\,\left( {mn = 11,12,22,66} \right),\,} B = (1,\,\,z,\,\,z^{2} ,\,\,z^{3} ,\,\,z^{4} ,\,\,z^{6} ) \\ (\widetilde{{A_{kl} }},\,\,\widetilde{{D_{kl} }},\,\,\widetilde{{F_{kl} }}) & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{C_{kl} }} D{\text{d}}z\,} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{kl}^{c} D\,{\text{d}}z} \,\, + \int\limits_{{0.5h_{c} }}^{{0.5h_{c} + h_{f} }} {\overline{{C_{kl} }} D{\text{d}}z,\,\left( {kl = 44,55} \right),} D = (1,\,\,z^{2} ,\,\,z^{4} ) \\ \Phi_{i} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{e_{31} }} \,E{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{e_{31} }} \,\,E{\text{d}}z} ,\,\Gamma_{i} = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{q_{31} }} E{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{q_{31} }} \,\,E{\text{d}}z} ,\, \\ \Phi_{j} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{e_{32} }} \,E{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{e_{32} }} \,\,E{\text{d}}z} ,\Gamma_{j} = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{q_{32} }} \,E\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{q_{32} }} \,E\,{\text{d}}z} ,\,E = \left( {1,z,z^{3} } \right), \\ \alpha_{i} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\left( {\overline{{C_{11} }} + \overline{{C_{12} }} } \right)\overline{{\alpha_{1} }} E\,{\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{11}^{c} \alpha_{11}^{c} \,E{\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{12}^{c} \alpha_{22}^{c} E\,{\text{d}}z} + \\ & \quad + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\left( {\overline{{C_{11} }} + \overline{{C_{12} }} } \right)\overline{{\alpha_{1} }} E\,{\text{d}}z} ,\,\,\,\left( {i = 1,3,5} \right),\left( {j = 2,4,6} \right), \\ \end{aligned} $$
$$ \begin{aligned} \alpha_{j} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\left( {\overline{{C_{12} }} + \overline{{C_{22} }} } \right)\overline{{\alpha_{2} }} \,{{K}}\,{\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{12}^{c} \alpha_{11}^{c} \,{{K}}{\text{d}}z} \\ & \,\,\,\,\,\,\,\,\, + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} }} {Q_{22}^{c} \alpha_{22}^{c} \,{{K}}\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\left( {\overline{{C_{12} }} + \overline{{C_{22} }} } \right)\overline{{\alpha_{2} }} \,{{K}}{\text{d}}z} ,\,\,\,\left( {j = 2,4,6} \right), \\ \Phi_{k} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{e_{24} }} H\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{e_{24} }} H\,{\text{d}}z} ,\,\,\,\,\left( {k = 8,10} \right), \\ \Gamma_{k} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\,\,\overline{{q_{24} }} H\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{q_{24} }} H\,\,\,{\text{d}}z} ,\,\,\,\left( {k = 8,10} \right), \\ \Phi_{k} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\overline{{e_{15} }} H\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\overline{{e_{15} }} H{\text{d}}z} ,\,\,\,\left( {k = 8,10} \right), \\ \Gamma_{l} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{ - 0.5h_{c} }} {\,\,\overline{{q_{15} }} H\,{\text{d}}z} + \int\limits_{{0.5h_{c} }}^{{h_{f} + 0.5h_{c} }} {\,\,\overline{{q_{15} }} H\,{\text{d}}z} ,\,\,\,\left( {l = 7,9} \right),\,H = \left( {1,z,z^{3} } \right),K = \left( {1,z^{2} } \right). \\ \end{aligned} $$
$$ \begin{aligned} \overline{{C_{11} }} & = C_{11}^{f} - \frac{{\left( {C_{13}^{f} } \right)^{2} }}{{C_{33}^{f} }}{,}\overline{{C_{12} }} = C_{12}^{f} - \frac{{C_{13}^{f} C_{23}^{f} }}{{C_{33}^{f} }},\overline{{C_{55} }} = C_{55}^{f} {,}\,\overline{{C_{44} }} = C_{44}^{f} {, }\overline{{C_{22} }} = C_{22}^{f} - \frac{{\left( {C_{23}^{f} } \right)^{2} }}{{C_{33}^{f} }}{,} \\ \overline{{C_{66} }} & = C_{66}^{f} ,\,\overline{{e_{31} }} = e_{31}^{f} - \frac{{C_{13}^{f} e_{33}^{f} }}{{C_{33}^{f} }}{,}\overline{{e_{15} }} = e_{15}^{f} {, }\,\overline{{e_{32} }} = e_{32}^{f} - \frac{{C_{23}^{f} e_{33}^{f} }}{{C_{33}^{f} }},\,\overline{{e_{24} }} = e_{24}^{f} ,\,\overline{{q_{31} }} = q_{31}^{f} - \frac{{C_{13}^{f} q_{33}^{f} }}{{C_{33}^{f} }},\, \\ \overline{{q_{15} }} & = q_{15}^{f} {,}\overline{{q_{32} }} = q_{32}^{f} - \frac{{C_{23}^{f} q_{33}^{f} }}{{C_{33}^{f} }},\,\overline{{q_{24} }} = q_{24}^{f} ,\,\,\overline{{\mu_{33} }} = \mu_{33}^{f} + \frac{{\left( {q_{33}^{f} } \right)^{2} }}{{C_{33}^{f} }},\overline{{\mu_{11} }} = \mu_{11}^{f} {,}\,\overline{{\mu_{22} }} = \mu_{22}^{f} {,} \\ \end{aligned} $$
$$ \overline{{\eta_{11} }} = \eta_{11}^{f} {,}\,\overline{{\eta_{22} }} = \eta_{22}^{f} {,}\overline{{m_{11} }} = m_{11}^{f} {,}\,\overline{{m_{22} }} = m_{22}^{f} {,}\,\overline{{\lambda_{1} }} = \lambda_{1}^{f} {,}\,\,\overline{{\lambda_{2} }} = \lambda_{2}^{f} {,} $$
$$ \overline{{\alpha_{2} }} = \alpha_{2}^{f} - C_{23}^{f} \alpha_{3}^{f} /C_{33}^{f} {,}\overline{{p_{3} }} = p_{3}^{f} + e_{33}^{f} \alpha_{33}^{f} /C_{33}^{f} ,\overline{{\lambda_{3} }} = \lambda_{3}^{f} + q_{33}^{f} \alpha_{33}^{f} /C_{33}^{f} , $$
$$ \overline{{p_{1} }} = p_{1}^{f} {,}\,\overline{{p_{2} }} = p_{2}^{f} {,}\overline{{\eta_{33} }} = \eta_{33}^{f} + \frac{{\left( {e_{33}^{f} } \right)^{2} }}{{C_{33}^{f} }},\,\overline{{m_{33} }} = m_{33}^{f} + \frac{{e_{33}^{f} q_{33}^{f} }}{{C_{33}^{f} }},\overline{{\alpha_{1} }} = \alpha_{1}^{f} - \frac{{C_{13}^{f} \alpha_{3}^{f} }}{{C_{33}^{f} }}. $$

Appendix B

$$ \begin{aligned} \Delta & = \widetilde{{A_{11} }}\widetilde{{A_{22} }} - \widetilde{{A_{12}^{2} }},\,\,\,\,\Im_{11}^{{}} = \frac{{\widetilde{{A_{22} }}}}{\Delta },\,\,\,\,\Im_{12}^{{}} = \frac{{\widetilde{{A_{12} }}}}{\Delta },\,\,\Im_{13}^{{}} = \frac{{\widetilde{{B_{12} }}\widetilde{{A_{12} }} - \widetilde{{B_{11} }}\widetilde{{A_{22} }}}}{\Delta },\,\,\, \\ \Im_{14}^{{}} & = \frac{{\widetilde{{B_{22} }}\widetilde{{A_{12} }} - \widetilde{{B_{12} }}\widetilde{{A_{22} }}}}{\Delta },\Im_{15}^{{}} = \frac{{\widetilde{{E_{12} }}\widetilde{{A_{12} }} - \widetilde{{E_{11} }}\widetilde{{A_{22} }}}}{\Delta },\Im_{24}^{{}} = \frac{{\widetilde{{B_{12} }}\widetilde{{A_{12} }} - \widetilde{{B_{22} }}\widetilde{{A_{11} }}}}{\Delta },\,\, \\ \Im_{25}^{{}} & = \frac{{\widetilde{{E_{11} }}\widetilde{{A_{12} }} - \widetilde{{E_{12} }}\widetilde{{A_{11} }}}}{\Delta }\,,\Im_{26}^{{}} = \frac{{\widetilde{{E_{12} }}\widetilde{{A_{12} }} - \widetilde{{E_{22} }}\widetilde{{A_{11} }}}}{\Delta },\,\Im_{16}^{{}} = \frac{{\widetilde{{E_{22} }}\widetilde{{A_{12} }} - \widetilde{{E_{12} }}\widetilde{{A_{22} }}}}{\Delta },\, \\ \,\Im_{17}^{{}} & = 2\frac{{2e_{32} \widetilde{{A_{12} }} - 2e_{31} \widetilde{{A_{22} }}}}{\Delta },\,\Im_{18}^{{}} = 2\frac{{2q_{32} \widetilde{{A_{12} }} - 2q_{31} \widetilde{{A_{22} }}}}{\Delta },\Im_{27}^{{}} = 2\frac{{2e_{31} \widetilde{{A_{12} }} - 2e_{32} \widetilde{{A_{11} }}}}{\Delta },\, \\ \Im_{28}^{{}} & = 2\frac{{2q_{31} \widetilde{{A_{12} }} - 2q_{32} \widetilde{{A_{11} }}}}{\Delta },\Im_{29}^{{}} = \frac{{ - \alpha_{1} \widetilde{{A_{12} }} + \alpha_{2} \widetilde{{A_{11} }}}}{\Delta },\,\,\Im_{19}^{{}} = \frac{{ - \alpha_{2} \widetilde{{A_{12} }} + \alpha_{1} \widetilde{{A_{22} }}}}{\Delta }, \\ \Im_{21}^{{}} & = \frac{{\widetilde{{A_{11} }}}}{\Delta },\,\,\Im_{23}^{{}} = \frac{{\widetilde{{B_{11} }}\widetilde{{A_{12} }} - \widetilde{{B_{12} }}\widetilde{{A_{11} }}}}{\Delta },\Im_{31}^{{}} = \frac{1}{{\widetilde{{A_{66} }}}},\,\,\Im_{32}^{{}} = - \frac{{\widetilde{{B_{66} }}}}{{\widetilde{{A_{66} }}}},\,\,\Im_{33}^{{}} = - \frac{{\widetilde{{E_{66} }}}}{{\widetilde{{A_{66} }}}},\, \\ \end{aligned} $$
$$ \begin{aligned} \widetilde{{\aleph_{1}^{{}} }} & = \aleph_{1} ,\,\widetilde{{\aleph_{1}^{*} }} = \aleph_{1} + \frac{{2\aleph_{2} }}{R},\,\widetilde{{\aleph_{2}^{{}} }} = \aleph_{2} - c_{1} \aleph_{4} ,\,\widetilde{{\aleph_{2}^{*} }} = \aleph_{2} + \frac{{\aleph_{3} }}{R} - c_{1} \aleph_{4} - \frac{{c_{1} \aleph_{5} }}{R};\, \\ \widetilde{{\aleph_{3}^{{}} }} & = c_{1} \aleph_{4} ,\,\widetilde{{\aleph_{3}^{*} }} = c_{1} \aleph_{4} + \frac{{c_{1} \aleph_{5} }}{R},\widetilde{{\aleph_{4}^{{}} }} = \aleph_{3} - 2c_{1} \aleph_{5} + c_{1}^{2} \aleph_{7} ,\,\widetilde{{\aleph_{4}^{*} }} = \widetilde{{\aleph_{4}^{{}} }}, \\ \,\widetilde{{\aleph_{5}^{{}} }} & = c_{1} \aleph_{5} - c_{1}^{2} \aleph_{7} ,\widetilde{{\aleph_{5}^{*} }} = \widetilde{{\aleph_{5}^{{}} }}, \\ \,\aleph_{i} & = \int\limits_{{ - h_{f} - \frac{{h_{c} }}{2}}}^{{ - \frac{{h_{c} }}{2}}} {\rho_{f} (z)z^{i - 1} {\text{d}}z} + \,\,\,\int\limits_{{ - \frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2}}} {\rho_{c} (z)z^{i - 1} {\text{d}}z} + \int\limits_{{\frac{{h_{c} }}{2}}}^{{\frac{{h_{c} }}{2} + h_{f} }} {\rho_{f} (z)z^{i - 1} {\text{d}}z} ,\,\,\left( {i = \overline{1,5} \,\,and\,\,7} \right). \\ \end{aligned} $$
$$ \begin{aligned} T_{11} \left( w \right) & = S_{11} w_{{,x^{2} }} + S_{12} w_{{,y^{2} }} + S_{13} w_{{,x^{4} }} + S_{14} w_{{,x^{2} y^{2} }} + S_{15} w_{{,y^{4} }} - k_{1} w + k_{2} \left( {w_{{,x^{2} }} + w_{{,y^{2} }} } \right), \\ T_{12} \left( {\phi_{x} } \right) & = S_{11} \phi_{x,x} + S_{16} \phi_{{x,x^{3} }} + S_{17} \phi_{{x,xy^{2} }} ,\,\,T_{13} \left( {\phi_{y} } \right) = S_{12} \phi_{y,y} + S_{18} \phi_{{y,y^{3} }} + S_{19} \phi_{{y,x^{2} y}} , \\ T_{14} (\wp ) & = S_{110} \frac{{\partial^{4} \wp }}{{\partial x^{4} }} + S_{111} \frac{{\partial^{4} \wp }}{{\partial x^{2} \partial y^{2} }} + S_{112} \frac{{\partial^{4} \wp }}{{\partial y^{4} }}, \\ T_{15} \left( \Phi \right) & = \left( {S_{114} \cos \left( {\eta z} \right) - S_{115} \eta \sin \left( {\eta z} \right)} \right)\frac{{\partial^{2} \Phi }}{{\partial^{2} x}} + \left( {S_{113} \cos \left( {\eta z} \right) - S_{116} \eta \sin \left( {\eta z} \right)} \right)\frac{{\partial^{2} \Phi }}{{\partial^{2} y}}, \\ T_{16} \left( \Psi \right) & = \left( {S_{118} \cos \left( {\eta z} \right) - S_{119} \eta \sin \left( {\eta z} \right)} \right)\frac{{\partial^{2} \Psi }}{{\partial^{2} x}} + \left( {S_{117} \cos \left( {\eta z} \right) - S_{120} \eta \sin \left( {\beta z} \right)} \right)\frac{{\partial^{2} \Psi }}{{\partial^{2} y}}, \\ X\left( {w,\wp } \right) & = \frac{{\partial^{2} \wp }}{{\partial y^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} + \frac{{\partial^{2} \wp }}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} - 2\frac{{\partial^{2} \wp }}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{1}{R}\frac{{\partial^{2} \wp }}{{\partial x^{2} }}, \\ \end{aligned} $$
$$ \begin{aligned} T_{21} \left( w \right) & = S_{21} \frac{\partial w}{{\partial x}} + S_{22} \frac{{\partial^{3} w}}{{\partial x^{3} }} + S_{23} \frac{{\partial^{3} w}}{{\partial x\partial y^{2} }},\,\, \\ T_{22} \left( {\phi_{x} } \right) & = S_{21} \phi_{x} + S_{24} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} + S_{25} \frac{{\partial^{2} \phi_{x} }}{{\partial y^{2} }}, \\ T_{23} \left( {\phi_{y} } \right) & = S_{26} \frac{{\partial^{2} \phi_{y} }}{\partial x\partial y},\, \\ \end{aligned} $$
$$ \begin{aligned} T_{25} \left( \Phi \right) & = - \left( {S_{114} \cos \left( {\eta z} \right) + S_{29} \eta \sin \left( {\eta z} \right)} \right)\frac{\partial \Phi }{{\partial x}}, \\ T_{26} \left( \Psi \right) & = - \left( {S_{118} \cos \left( {\eta z} \right) + S_{210} \eta \sin \left( {\eta z} \right)} \right)\frac{\partial \Psi }{{\partial x}}, \\ T_{31} \left( w \right) & = S_{31} \frac{\partial w}{{\partial y}} + S_{32} \frac{{\partial^{3} w}}{{\partial x^{2} \partial y}} + S_{33} \frac{{\partial^{3} w}}{{\partial y^{3} }},\,\,\, \\ \end{aligned} $$
$$ \begin{array}{*{20}c} \begin{gathered} T_{24} (\wp ) = S_{27} \frac{{\partial^{3} \wp }}{{\partial x^{3} }} + S_{28} \frac{{\partial^{3} \wp }}{{\partial x\partial y^{2} }}, \hfill \\ T_{33} \left( {\phi_{y} } \right) = S_{31} \phi_{y} + S_{35} \frac{{\partial^{2} \phi_{y} }}{{\partial x^{2} }} + S_{36} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }},\,\, \hfill \\ T_{34} (\wp ) = S_{37} \frac{{\partial^{3} \wp }}{{\partial x^{2} \partial y}} + S_{38} \frac{{\partial^{3} \wp }}{{\partial y^{3} }}, \hfill \\ \end{gathered} & \begin{gathered} T_{32} \left( {\phi_{x} } \right) = S_{34} \frac{{\partial^{2} \phi_{x} }}{\partial x\partial y}, \hfill \\ T_{35} \left( \Phi \right) = - \left( {S_{113} \cos \left( {\eta z} \right) + S_{39} \eta \sin \left( {\eta z} \right)} \right)\frac{\partial \Phi }{{\partial y}}, \hfill \\ T_{36} \left( \Psi \right) = - \left( {S_{117} \cos \left( {\eta z} \right) + S_{310} \beta \sin \left( {\eta z} \right)} \right)\frac{\partial \Psi }{{\partial y}}. \hfill \\ \end{gathered} \\ \end{array} $$
$$ \begin{aligned} \overline{\overline{{\aleph_{3} }}} & = \overline{{\aleph_{4} }} - \left( {\overline{{\aleph_{2} }} } \right)^{2} /\overline{{\aleph_{1} }} ,\,\overline{\overline{{\aleph_{3}^{*} }}} = \overline{{\aleph_{4}^{*} }} - \left( {\overline{{\aleph_{2}^{*} }} } \right)^{2} /\overline{{\aleph_{1}^{*} }} ,\,\overline{\overline{{\aleph_{5} }}} = \overline{{\aleph_{5} }} - \overline{{\aleph_{2} }} \overline{{\aleph_{3} }} /\overline{{\aleph_{1} }} , \\ \overline{\overline{{\aleph_{5}^{*} }}} & = \overline{{\aleph_{5}^{*} }} - \overline{{\aleph_{2}^{*} }} \overline{{\aleph_{3}^{*} }} /\overline{{\aleph_{1}^{*} }} ,\,\overline{\overline{{\aleph_{7} }}} = \left( {\overline{{\aleph_{3} }} } \right)^{2} /\overline{{\aleph_{1} }} - c_{1}^{2} \aleph_{7} ,\overline{\overline{{\aleph_{7}^{*} }}} = \left( {\overline{{\aleph_{3}^{*} }} } \right)^{2} /\overline{{\aleph_{1}^{*} }} - c_{1}^{2} \aleph_{7} . \\ \end{aligned} $$

Appendix C

$$ \begin{aligned} T_{11}^{*} (w^{*} ) & = S_{11} w_{{,x^{2} }}^{*} { + }S_{12} w_{{,y^{2} }}^{*} ,T_{21}^{*} (w^{*} ) = S_{21} w_{,x}^{*} ,\,\,T_{31}^{*} (w^{*} ) = S_{31} w_{,y}^{*} . \\ X_{{}}^{ * } \left( {w^{*} ,\wp } \right) & = \wp_{{,y^{2} }} w_{{,x^{2} }}^{*} - 2\wp_{,xy} w_{,xy}^{*} + \wp_{{,x^{2} }} w_{{,y^{2} }}^{*} , \\ \end{aligned} $$
$$ \begin{aligned} J_{1} & = \Im_{31}^{{}} - 2\Im_{12}^{{}} ,\,J_{2} = \Im_{23}^{{}} - c_{1} \Im_{25}^{{}} ,\,\,J_{3} = \Im_{13}^{{}} - c_{1} \Im_{15}^{{}} - \Im_{32}^{{}} + c_{1} \Im_{33}^{{}} , \\ J_{4} & = \Im_{14}^{{}} - c_{1} \Im_{16}^{{}} ,\,J_{5} = \Im_{24}^{{}} - c_{1} \Im_{26}^{{}} - \Im_{32}^{{}} + c_{1} \Im_{33}^{{}} ,\,\,J_{6} = - c_{1} \Im_{15}^{{}} - c_{1} \Im_{26}^{{}} + 2c_{1} \Im_{33}^{{}} . \\ \end{aligned} $$
$$ \begin{aligned} H_{1} & = \frac{{\beta^{2} }}{{32\Im_{21}^{{}} \alpha_{{}}^{2} }}W(W + 2\mu^{*} ),\,\,\,\,H_{2} = \frac{{\alpha_{{}}^{2} }}{{32\Im_{11}^{{}} \beta^{2} }}W(W + 2\mu^{*} ),\,\,\,H_{3} = P_{1} W + P_{2} \Phi_{x} + P_{3} \Phi_{y} , \\ P_{1} & = \left( {\alpha^{2} /R + c_{1} \Im_{25}^{{}} \alpha^{4} + c_{1} \Im_{16}^{{}} \beta^{4} - J_{6} \alpha^{2} \beta^{2} } \right)/G\,,P_{2} = - (J_{2} \alpha^{3} + J_{3} \alpha \beta^{2} )/G, \\ P_{3} & = - (J_{4} \beta^{3} + J_{5} \alpha^{2} \beta )/G,\,G = \Im_{21}^{{}} \alpha^{4} + J_{1} \alpha^{2} \beta^{2} + \Im_{11}^{{}} \beta^{4} , \\ \end{aligned} $$
$$ \begin{aligned} t_{11} & = - k_{1} - k_{2} \left( {\alpha^{2} + \beta^{2} } \right) + S_{13} \alpha^{4} + S_{14} \alpha^{2} \beta^{2} + S_{15} \beta^{4} + S_{110} P_{1} \alpha^{4} + S_{111} P_{1} \alpha^{2} \beta^{2} + S_{112} P_{1} \beta^{4} - P_{1} \frac{{\alpha^{2} }}{R}, \\ t_{12} & = - S_{11} \alpha + S_{16} \alpha^{3} + S_{17} \alpha \beta^{2} + S_{110} P_{2} \alpha^{4} + S_{111} P_{2} \alpha^{2} \beta^{2} + S_{112} P_{2} \beta^{4} - P_{2} \frac{{\alpha^{2} }}{R}, \\ l_{13} & = - S_{12} \beta + S_{18} \beta^{3} + S_{19} \alpha^{2} \beta + S_{110} P_{3} \alpha^{4} + S_{111} P_{3} \alpha^{2} \beta^{2} + S_{112} P_{3} \beta^{4} - P_{3} \frac{{\alpha^{2} }}{R}, \\ t_{14} & = \frac{{32P_{2} \alpha \beta }}{3LR\pi },\,\,t_{15} = \frac{{32P_{3} \alpha \beta }}{3LR\pi },\,\,t_{16} = \eta \sin \left( {\eta z} \right)\left( {\alpha^{2} S_{115} + \beta^{2} S_{116} } \right), \\ \end{aligned} $$
$$ l_{2} = \frac{{32P_{1} \beta \alpha }}{3LR\pi },l_{1} = - S_{11} \alpha^{2} - S_{12} \beta^{2} ,\,\,t_{17} = \eta \sin \left( {\eta z} \right)\left( {S_{119} \alpha^{2} + S_{120} \beta^{2} } \right), $$
$$ \begin{aligned} O_{11} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{0.5h_{c} }} {e_{15} T{\text{cos}}\left( {\eta z} \right)} {\text{d}}z + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} + h_{f} }} {e_{15} T{\text{cos}}\left( {\eta z} \right)} {\text{d}}z,\,T = \left( {1 - 3c_{1} z^{2} } \right) \\ \eta_{11}^{*} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{0.5h_{c} }} {e_{15} \eta_{11} {\text{cos}}\left( {\eta z} \right){\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} + h_{f} }} {e_{15} \eta_{11} {\text{cos}}\left( {\eta z} \right){\text{d}}z} , \\ m_{11}^{*} & = \int\limits_{{ - h_{f} - 0.5h_{c} }}^{{0.5h_{c} }} {m_{11} {\text{cos}}\left( {\eta z} \right){\text{d}}z} + \int\limits_{{ - 0.5h_{c} }}^{{0.5h_{c} + h_{f} }} {m_{11} {\text{cos}}\left( {\eta z} \right){\text{d}}z} , \\ \end{aligned} $$

Appendix D

$$ t_{14}^{1} = t_{14}^{{}} ,t_{15}^{1} = t_{15}^{{}} ,\,l_{1}^{1} = l_{1} + \alpha^{2} \left( {\frac{{\Im_{17}^{{}} }}{{\Im_{11} }}\phi_{0} + \frac{{\Im_{18}^{{}} }}{{\Im_{11} }}\psi_{0} + \frac{{\Im_{19}^{{}} }}{{\Im_{11} }}\Delta T} \right),\,\,l_{4}^{1} = \left( {l_{4} - \frac{{\alpha^{4} }}{{8\Im_{11} }}} \right), $$
$$ \begin{array}{*{20}c} \begin{gathered} t_{11}^{1} = \left( {t_{11} + t_{16} h_{11} + t_{17} h_{21} } \right), \hfill \\ t_{12}^{1} = \left( {t_{12} + t_{16} h_{12} + t_{17} h_{22} } \right), \hfill \\ t_{13}^{1} = \left( {t_{13} + t_{16} h_{13} + t_{17} h_{23} } \right), \hfill \\ \end{gathered} & \begin{gathered} t_{21}^{1} = \left( {t_{21} { + }t_{24} h_{11} { + }t_{25} h_{21} } \right), \hfill \\ t_{22}^{1} = \left( {t_{22} + t_{24} h_{12} + t_{25} h_{22} } \right), \hfill \\ t_{23}^{1} = \left( {t_{23} + t_{24} h_{13} + t_{25} h_{23} } \right), \hfill \\ \end{gathered} & \begin{gathered} t_{31}^{1} = \left( {t_{31} { + }t_{34} h_{11} { + }t_{35} h_{21} } \right), \hfill \\ t_{32}^{1} = \left( {t_{32} + t_{34} h_{12} + t_{35} h_{22} } \right), \hfill \\ t_{33}^{1} = \left( {t_{33} + t_{34} h_{13} + t_{35} h_{23} } \right), \hfill \\ \end{gathered} \\ \end{array} $$
$$ \begin{array}{*{20}c} \begin{gathered} h_{11} = \frac{{\left( {t_{45} t_{51}^{{}} { - }t_{41}^{{}} t_{55} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}, \hfill \\ h_{12} = \frac{{\left( {t_{45} t_{52}^{{}} - t_{42}^{{}} t_{55} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}, \hfill \\ \end{gathered} & \begin{gathered} h_{13} = \frac{{\left( {t_{45} t_{53}^{{}} - t_{43}^{{}} t_{55} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}, \hfill \\ h_{21} = \frac{{\left( {t_{41}^{{}} t_{54} { - }t_{44} t_{51}^{{}} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}, \hfill \\ \end{gathered} & \begin{gathered} h_{22} = \frac{{\left( {t_{42}^{{}} t_{54} - t_{44} t_{52}^{{}} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}, \hfill \\ h_{23} = \frac{{\left( {t_{43}^{{}} t_{54} - t_{44} t_{53}^{{}} } \right)}}{{\left( {t_{44} t_{55} - t_{45} t_{54} } \right)}}. \hfill \\ \end{gathered} \\ \end{array} $$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dat, N.D., Anh, V.T.T. & Duc, N.D. Vibration characteristics and shape optimization of FG-GPLRC cylindrical shell with magneto-electro-elastic face sheets. Acta Mech 234, 4749–4773 (2023). https://doi.org/10.1007/s00707-023-03620-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03620-4

Navigation