Skip to main content
Log in

Wave characteristics in magneto-electro-elastic laminated composites with different layering directions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We compare the dispersion curves and mode shapes in magneto-electro-elastic laminated composites with different layering directions. We use the generalized pseudo-Stroh formulation and propagator matrix approach to investigate the wave characteristics of the piezoelectric and piezomagnetic laminates with the layering direction either along y-axis or z-axis. The polarization direction of the piezoelectric and piezomagnetic materials [001] is along z-axis. In particular, both BaTiO3/CoFe2O4/BaTiO3 and BaTiO3/Terfenol-D/BaTiO3 sandwich composites are considered in the numerical example and the wave characteristics of the Lamb wave and SH wave are computed. Differences of the dispersion curves and the mode shapes of the sandwich plates show the important role of the layering direction. The decoupling feature of the Lamb wave and SH wave is consistent with that of the static case if the layering direction is along y-axis, but different from the static case when the layering direction is along z-axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9.
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abdolhoseyni, J., Danesh, M.: Sound transmission loss of a sandwich functionally graded cylindrical shell integrated with magneto-electro-elastic patches. J. Sound Vib. 543, 117350 (2023)

    Article  Google Scholar 

  2. Alshits, V.I., Darinskii, A.N., Lothe, L.: On the existence of surface waves in half-infinite anisotropic elastic media with piezoelectric and piezomagnetic properties. Wave Motion 16, 265–283 (1992)

    Article  MATH  Google Scholar 

  3. Calas, H., Otero, J.A., Rodriguez-Ramos, R., Monsivais, G., Stern, C.: Dispersion relations for SH wave in magneto-electro-elastic heterostructures. Int. J. Solids Struct. 45, 5356–5367 (2008)

    Article  MATH  Google Scholar 

  4. Chen, J., Chen, H., Pan, E., Heyliger, P.R.: Modal analysis of magneto-electro-elastic plates using the state-vector approach. J. Sound Vib. 304, 722–734 (2007)

    Article  Google Scholar 

  5. Chen, J., Guo, J., Pan, E.: Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect. J. Sound Vib. 400, 550–563 (2017)

    Article  Google Scholar 

  6. Ebrahimi, F., Barati, M.R.: Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory. Smart Mater. Struct. 25, 105014 (2014)

    Article  Google Scholar 

  7. Engdahl, G.: Handbook of giant magnetostrictive materials. Academic Press, San Diego (2000)

    Google Scholar 

  8. Ke, L.-L., Wang, Y.-S., Yang, J., Kitipornchai, S.: The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater. Struct. 23, 125036 (2014)

    Article  Google Scholar 

  9. Kiran, M.C., Kattimani, S.C.: Free vibration and static analysis of functionally graded skew magneto-electro-elastic plate. Smart Struct. Syst. 21, 493–519 (2018)

    MATH  Google Scholar 

  10. Kuo, H.-Y., Bhattacharya, K.: Fibrous composites of piezoelectric and piezomagnetic phases. Mech. Mater. 60, 159–170 (2013)

    Article  Google Scholar 

  11. Kuo, H.-Y., Kuo, Y.-M.: Magnetoelectricity in multiferroic particulate composites with arbitrary crystallographic orientation. Smart Mater. Struct. 21, 105038 (2012)

    Article  Google Scholar 

  12. Kuo, H.-Y., Slinger, A., Bhattacharya, K.: Optimization of magnetoelectricity in piezoelectric-magnetostrictive bilayers. Smart Mater. Struct. 19, 125010 (2010)

    Article  Google Scholar 

  13. Kuo, H.Y., Wang, Y.-H.: Wave motion of magneto-electro-elastic laminated plates with membrane-type interfacial imperfections. Comp. Struct. 293, 115661 (2022)

    Article  Google Scholar 

  14. Kuo, H.-Y., Wei, K.-H.: Free vibration of multiferroic laminated composites with interface imperfections. Acta Mech. 233, 3699–3717 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lan, M., Wei, P.: Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer. Acta Mech. 225, 1779–1794 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, Y., Zhang, J.: Free vibration analysis of magnetoelectroelastic plate resting on a Pasternak foundation. Smart Mater. Struct. 23, 025002 (2014)

    Article  Google Scholar 

  17. Nan, C.W., Li, M., Huang, J.H.: Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys. Rev. B 63, 144415–144419 (2001)

    Article  Google Scholar 

  18. Ngak, F.P.E., Ntamack, G.E., Azrar, L.: Dynamic analysis of multilayered magnetoelectroelastic plates based on a pseudo-Stroh formalism and Lagrange polynomials. J. Int. Mat. Syst. Struct. 30, 939–962 (2019)

    Article  Google Scholar 

  19. Othmani, C., Khelfa, T.: Effect of graded pre-stress on the propagation of guided waves in functionally graded piezoelectric–piezomagnetic materials. Mech. Res. Commun. 127, 104037 (2023)

    Article  Google Scholar 

  20. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. ASME J. Appl. Mech. 68, 608–618 (2001)

    Article  MATH  Google Scholar 

  21. Pan, E., Heyliger, P.R.: Free vibrations of simply supported and multi-layered magneto-electro-elastic plates. J. Sound Vib. 252, 429–442 (2002)

    Article  Google Scholar 

  22. Pan, E., Waksmanski, N.: Deformation of a layered magnetoelectroelastic simply-supported plate with nonlocal effect, an analytical three-dimensional solution. Smart Mater. Struct. 25, 095013 (2016)

    Article  Google Scholar 

  23. Pang, Y., Feng, W., Liu, J., Zhang, C.: SH wave propagation in a piezo-electric/piezomagnetic plate with an imperfect magnetoelectroelastic interface. Waves Random Complex Media 29, 580–594 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Qian, Z., Jin, F., Wang, Z., Kishimoto, K.: Dispersion relations for SH-wave propagation in periodic piezoelectric composite layered structures. Int. J. Eng. Sci. 42, 673–689 (2004)

    Article  Google Scholar 

  25. Rajak, B.P., Kundu, S., Gupta, S.: Analysis of shear wave in a FGPE/FGPM structure with imperfect magneto-electro elastic bounding interface. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2078012

    Article  Google Scholar 

  26. Sirimontree, S., Thongchom, C., Saffari, P. R., Refahati, N., Saffari, P. R., Jearsiripongkul, T., Keawsawasvong S. Effects of thermal environment and external mean flow on sound transmission loss of sandwich functionally graded magneto-electro-elastic cylindrical nanoshell. Eur. J. Mech.-A/Solids 97:104774 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sladek, J., Sladek, V., Krahulee, S., Pan, E.: Analyses of functionally graded plates with a magnetoelectroelastic layer. Smart Mater. Struct. 22, 035003 (2013)

    Article  Google Scholar 

  28. Vinyas, M.: Computational analysis of smart magneto-electro-elastic materials and structures: review and classification. Arch. Comput. Methods Eng. 28, 1205–1248 (2021)

    Article  MathSciNet  Google Scholar 

  29. Waksmanski, N., Pan, E.: An analytical three-dimensional solution for free vibration of a magneto-electro-elastic plate considering the nonlocal effect. J. Intell. Mater. System Struct. 28, 1501–1513 (2017)

    Article  Google Scholar 

  30. Zhou, Y.Y., Lu, C.F., Chen, W.Q.: Bulk wave propagation in layered piezomagnetic/piezoelectric plates with initial stresses or interface imperfections. Compos. Struct. 94, 2736–2745 (2012)

    Article  Google Scholar 

  31. Zhu, F., Wang, B., Qian, Z.H.: A numerical algorithm to solve multivariate transcendental equation sets in complex domain and its application in wave dispersion curve characterization. Acta Mech. 230, 1303–1321 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Science and Technology Taiwan under Grant No.: MOST 109-2628-E-009-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsin-Yi Kuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, HY., Yang, LH., Huang, PC. et al. Wave characteristics in magneto-electro-elastic laminated composites with different layering directions. Acta Mech 234, 4467–4485 (2023). https://doi.org/10.1007/s00707-023-03611-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03611-5

Navigation