Skip to main content
Log in

Continuous contact problem of interaction between two arbitrarily positioned flat stamps on the thermoelectric material

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A continuous contact model of the thermoelectric layer under the action of two arbitrarily flat stamps is established. By using Fourier integral transformation method, the singular integral equations of the contact problem under different flat stamps are obtained. The contact stress distribution between two arbitrary stamps and the thermoelectric layer is given by using the numerical method for solving the singular integral equation. The influence of the interaction between two stamps on the current energy flow and the stress distribution in the thermoelectric material is discussed. The results show that when the stamps are close to each other, the thermoelectric layer and the rigid substrate are easier to fall off. The obtained research results can give the stress distribution of thermoelectric materials at any stamp position, and the model can also be degenerated into the contact problem under double symmetry or single stamp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hertz, H.: On the contact of elastic solids. J. Für Die Reine Und Angewandte Mathematik. 92, 156–171 (1982)

    MATH  Google Scholar 

  2. Volkan, K., Ahmet, B., Ragıp, E.: Frictionless contact problem an elastic layer bonded to rigid support and a rigid stamp. Math. Comput. Appl. 6, 13–22 (2001)

    MATH  Google Scholar 

  3. Hu, Z.: Contact around a sharp corner with small scale plasticity. Adv. Mater. 6, 10 (2017)

    Google Scholar 

  4. Hu, Z., Lu, W., Thouless, M.D.: Slip and wear at a corner with coulomb friction and an interfacial strength. Wear 338–339, 242–251 (2015)

    Google Scholar 

  5. Hu, Z., Lu, W., Thouless, M.D., Barber, J.R.: Effect of plastic deformation on the evolution of wear and local stress fields in fretting. Int. J. Solids Struct. 82, 1–8 (2016)

    Google Scholar 

  6. Petsagkourakis, I., Tybrandt, K., Crispin, X., Ohkubo, I., Satoh, N., Mori, T.: Thermoelectric materials and applications for energy harvesting power generation. Sci. Technol. Adv. Mater. 19, 836–862 (2018)

    Google Scholar 

  7. Orr, B., Akbarzadeh, A., Mochizuki, M., Singh, R.: Appl. Therm. Eng. 101, 490–495 (2016)

    Google Scholar 

  8. Shi, X.L., Zou, J., Chen, Z.G.: Advanced thermoelectric design: from materials and structures to devices. Chem. Rev. 120, 7399–7515 (2020)

    Google Scholar 

  9. Tan, G.J., Zhao, L.D., Kanatzidis, M.G.: Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 116, 12123–12149 (2016)

    Google Scholar 

  10. Zhang, A.B., Wang, B.L., Wang, J., Du, J.K.: Two-dimensional problem of thermoelectric materials with an elliptic hole or a rigid inclusion. Int. J. Therm. Sci. 117, 184–952017 (2017)

    Google Scholar 

  11. Zhang, A.B., Wang, B.L.: Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Eng. Fract. Mech. 151, 11–21 (2016)

    Google Scholar 

  12. Jin, Z.H.: Thermal stresses in a multilayered thin film thermoelectric structure. Microelectron. Reliab. 54, 1363–1368 (2014)

    Google Scholar 

  13. Song, H.P., Gao, C.F., Li, J.: Two-dimensional problem of a crack in thermoelectric materials. J. Therm. Stresses 38, 325–337 (2015)

    Google Scholar 

  14. Wang, B.L., Cui, Y.J.: Transient interlaminar thermal stress in multi-layered thermoelectric materials. Appl. Therm. Eng. 119, 207–214 (2017)

    Google Scholar 

  15. Wang, P., Wang, B.L., Wang, K.F., Cui, Y.J.: Analysis of inclusion in thermoelectric materials: the thermal stress field and the effect of inclusion on thermoelectric properties. Compos. B Eng. 166, 130–138 (2019)

    Google Scholar 

  16. Wang, P., Wang, B.L., Wang, K.F., Hirakatac, H., Zhang, C.: Analysis of three-dimensional ellipsoidal inclusions in thermoelectric solids. Int. J. Eng. Sci. 142, 158–169 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, D.D., Luo, Q.H., Liu, W., Zhou, Y.T.: Thermoelectric field disturbed by two unequal cracks adjacent to a hole in thermoelectric materials. Eng. Fract. Mech. 235, 107163 (2020)

    Google Scholar 

  18. Liu, Y., Wang, B.L., Zhang, C.: Mechanical model for a thermoelectric thin film bonded to an elastic infinite substrate. Mech. Mater. 114, 88–96 (2017)

    Google Scholar 

  19. Liu, Y., Wang, B.L., Zhang, C.: Thermoelastic behavior of a thermoelectric thin-film attached to an infinite elastic substrate. Philos. Mag. Struct. Proper. Condens. Matter. 97, 43–57 (2016)

    Google Scholar 

  20. Li, J.E., Wang, B.L., Zhang, C.: Thermal and electrical electrode/punch problem of thermoelectric materials. Int. J. Heat Mass Transf. 143, 118504 (2019)

    Google Scholar 

  21. Cui, Y.J., Wang, K.F., Wang, B.L., Wang, P.: Analysis of thermally induced delamination of thermoelectric thin film/substrate system. Int. J. Fract. 214, 201–208 (2018)

    Google Scholar 

  22. Cui, Y.J., Wang, B.L., Wang, P.: Analysis of thermally induced delamination and buckling of thin-film thermoelectric generators made up of pn-junctions. Int. J. Mech. Sci. 149, 393–401 (2017)

    Google Scholar 

  23. Tian, X.J., Zhou, Y.T., Guan, X.F., Wang, L.H., Ding, S.H.: The frictional contact problem of a rigid punch sliding over thermoelectric materials. Int. J. Solids Struct. 200–201, 145–157 (2020)

    Google Scholar 

  24. Zhou, Y.T., Tian, X.J., Li, F.J.: On coupling contact analysis of thermoelectric materials. Appl. Math. Model. 89, 14591474 (2020)

    MathSciNet  Google Scholar 

  25. Li, X., Tian, X.J., Zhou, Y.T.: Thickness size effect on contact behavior of a thermoelectric strip. Acta Mech. 232, 3305–3321 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Tian, X.J., Zhou, Y.T., Li, F.J., Wang, L.H.: Joint finite size influence and frictional influence on the contact behavior of thermoelectric strip. Arch. Appl. Mechanics. (2021). https://doi.org/10.1007/s00419-021-02061-6

    Article  Google Scholar 

  27. Tian, X.J., Zhou, Y.T., Ding, S.H.: The effectiveness of the bonding layer to attain reliable thermoelectric structures. Eur. J. Mech. A. Solids 93, 104513 (2022)

    MathSciNet  MATH  Google Scholar 

  28. Civelek, M.B., Erdogan, F.: The frictionless contact problem for an elastic layer under gravity. J. Appl. Mech. 42, 136–140 (1975)

    MATH  Google Scholar 

  29. Oner, E.: Two-dimensional frictionless contact analysis of an orthotropic layer under gravity. J. Mech. Mater. Stuct. 16, 573–594 (2021)

    MathSciNet  Google Scholar 

  30. Mez, S.: Moving contact problem of an unbonded layer in the presence of body force. Iranian J. Sci. Technol. Trans. Mech. Eng. 46, 927–942 (2022)

    Google Scholar 

  31. Civelek, M.B., Erdogan, F., Cakiroglu, A.O.: Interface separation for an elastic layer loaded by a rigid stamp. Int. J. Eng. Sci. 16, 669–679 (1978)

    MATH  Google Scholar 

  32. Cakiroglu, A.O., Cakiroglu, F.L.: Continuous and discontinuous contact problems for strips on an elastic semi-infinite plane. Int. J. Eng. Sci. 29, 99–111 (1991)

    Google Scholar 

  33. Birinci, A., Erdol, R.: A frictionless contact problem for two elastic layers supported by a Winkler foundation. Struct. Eng. Mech. 15, 331–344 (2003)

    Google Scholar 

  34. Oner, E., Birinci, A.: Continuous contact problem for two elastic layers resting on an elastic half-infinite plane. J. Mech. Mater. Struct. 9, 105–119 (2014)

    Google Scholar 

  35. Birinci, A., Adiyaman, G., Yaylaci, M., Oner, E.: Analysis of continuous and discontinuous cases of a contact problem using analytical method and FEM. Latin Am. J. Solids Struct. 12, 1771–1789 (2015)

    Google Scholar 

  36. Zhang, C.X., Ding, S.H.: Continuous contact problem of thermoelectric layer pressed by rigid punch. Appl. Math. Model. 100, 535–548 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Zhou, Y.T., Zhong, Z.: The interaction of two rigid semi-cylinders over anisotropic piezoelectric materials by the generalized Almansi theorem. Smart Mater. Struct. 24, 085011 (2015)

    Google Scholar 

  38. Zhou, Y.T., Kim, T.W.: Closed-form solutions for the contact problem of anisotropic materials indented by two collinear punches. Int. J. Mech. Sci. 89, 332–343 (2014)

    Google Scholar 

  39. Ozsahin, T.S.: Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches. Struct. Eng. Mech. 25, 383–403 (2007)

    Google Scholar 

  40. Lan, Q., Graham, G., Selvadurai, A.: Certain two-punch problems for an elastic layer. Int. J. Solids Struct. 33, 2759–2774 (1996)

    MATH  Google Scholar 

  41. Artan, R., Omurtag, M.: Two plane punches on a nonlocal elastic half plane. Int. J. Eng. Sci. 38, 395–403 (2000)

    Google Scholar 

  42. Reed, D.T., Daully, J.W.: A new method for measuring the strength and ductility of thin film. J. Mater. Res. 8, 1542–1550 (1993)

    Google Scholar 

  43. Polat, A., Kaya, Y., Özşahin, T.S.: Analytical solution to continuous contact problem for a functionally graded layer loaded through two dissimilar rigid punches. Meccanica (2018). https://doi.org/10.1007/s11012-018-0902-7

    Article  MathSciNet  Google Scholar 

  44. Erdogan, F.: Mixed boundary value problems in mechanics. Mech. Today. 4, 199–202 (1981)

    Google Scholar 

  45. Balijepalli, R.G., Begley, M.R., Fleck, N.A., McMeeking, R.M., Arzt, E.: Numerical simulation of the edge stress singularity and the adhesion strength for compliant mushroom fibrils adhered to rigid substrates. Int. J. Solids Struct. 85, 160–171 (2016)

    Google Scholar 

  46. Balijepalli, R.G., Fischer, S.C.L., Hensel, R., McMeeking, R.M., Arzt, E.: Numerical study of adhesion enhancement by composite fibrils with soft tip layers. J. Mech. Phys. Solids 99, 357–378 (2017)

    MathSciNet  Google Scholar 

  47. Luo, A., Nasab, A.M., Tatari, M., Chen, S., Shan, W.L., Turner, K.T.: Adhesion of flat-ended pillars with non-circular contacts. Soft Matter 16, 9534–9542 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12262033, 12272269, 11972257, 12062021 and 12062022), Ningxia Hui Autonomous Region Science and Technology Innovation Leading Talent Training Project (2020GKLRLX01), and the Natural Science Foundation of Ningxia (2022AAC03068, 2022AAC03001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yueting Zhou or Shenghu Ding.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$N_{1} (x,y) = N_{d1} (x,y) + N_{d2} (x,y)$$
$$N_{2} (x,y) = N_{f1} (x,y) + N_{f2} (x,y)$$
$$\begin{gathered} N_{d1} (x,y) = \frac{G}{k - 1}\left( {(k + 1)\left( {\frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {\left( { - \frac{{i\beta^{*} \gamma }}{\pi \lambda (\kappa - 1)}\int\limits_{ - \infty }^{\infty } {(\eta_{1} X_{1} I_{1} (\xi )I_{1} (s - \xi )e^{{\eta_{1} y}} + \eta_{2} X_{2} I_{2} (\xi )I_{2} (s - \xi )e^{{\eta_{2} y}} } } \right.} } \right.} \right. \hfill \\ \quad \quad \quad \quad \quad \left. {\left. {\left. { +\, \eta_{3} X_{3} I_{1} (s - \xi )I_{2} (\xi )e^{{\eta_{3} y}} + \eta_{4} X_{4} I_{1} (\xi )I_{2} (s - \xi )e^{{\eta_{4} y}} } \right)d\xi - \left| s \right|X_{5} H_{1} (s)e^{ - \left| s \right|y} + \left| s \right|X_{6} H_{2} (s)e^{\left| s \right|y} } \vphantom{\int\limits_{ - \infty }^{\infty }}\right)e^{ - isx} ds} \vphantom{\int\limits_{ - \infty }^{\infty }}\right) \hfill \\ \quad \quad \quad \quad \quad + \,(3 - k)\left( {\frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {\left( {s\frac{{\beta^{*} \gamma }}{\pi \lambda (\kappa - 1)}\int\limits_{ - \infty }^{\infty } {\left( {K_{1} I_{1} (\xi )I_{1} (s - \xi )e^{{\eta_{1} y}} + K_{2} I_{2} (\xi )I_{2} (s - \xi )e^{{\eta_{2} y}} } \right.} } \right.} } \right. \hfill \\ \quad \quad \quad \quad \quad \left. {\left. {\left. { +\, K_{3} I_{1} (s - \xi )I_{2} (\xi )e^{{\eta_{3} y}} + K_{4} I_{1} (\xi )I_{2} (s - \xi )e^{{\eta_{4} y}} )d\xi + \left( {K_{5} H_{1} (s)e^{ - \left| s \right|y} + K_{6} H_{2} (s)e^{\left| s \right|y} } \right)} \vphantom{\int\limits_{ - \infty }^{\infty }}\right)e^{ - isx} ds}\vphantom{\int\limits_{ - \infty }^{\infty }} \right)} \vphantom{\int\limits_{ - \infty }^{\infty }}\right) \hfill \\ \end{gathered}$$
(A.1)
$$N_{d2} (x,y) = - \rho g( - y + h)$$
(A.2)
$$\begin{gathered} N_{f1} (x,y) = G\left( {\frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {\left( {\frac{{i\beta^{*} \gamma }}{\pi \lambda (\kappa - 1)}\int\limits_{ - \infty }^{\infty } {\left( {\eta_{1} K_{1} I_{1} (\xi )I_{1} (s - \xi )e^{{\eta_{1} y}} + \eta_{2} K_{2} I_{2} (\xi )I_{2} (s - \xi )e^{{\eta_{2} y}} } \right.} } \right.} } \right. \hfill \\ \quad \quad \quad \quad \quad \left. {\left. {\left. { +\, \eta_{3} K_{3} I_{1} (s - \xi )I_{2} (\xi )e^{{\eta_{3} y}} + \eta_{4} K_{4} I_{1} (\xi )I_{2} (s - \xi )e^{{\eta_{4} y}} } \right)d\xi + \left( { - \left| s \right|K_{5} H_{1} (s)e^{ - \left| s \right|y} + \left| s \right|K_{6} H_{2} (s)e^{\left| s \right|y} } \right)} \vphantom{\int\limits_{ - \infty }^{\infty }} \right)e^{ - isx} ds} \vphantom{\int\limits_{ - \infty }^{\infty }}\right) \hfill \\ \quad \quad \quad \quad \quad +\, \left( {\frac{1}{2\pi }\int\limits_{ - \infty }^{\infty } {\left( { - s\frac{{\beta^{*} \gamma }}{\pi \lambda (\kappa - 1)}\int\limits_{ - \infty }^{\infty } {\left( {X_{1} I_{1} (\xi )I_{1} (s - \xi )e^{{\eta_{1} y}} + X_{2} I_{2} (\xi )I_{2} (s - \xi )e^{{\eta_{2} y}} } \right.} } \right.} } \right. \hfill \\ \quad \quad \quad \quad \quad \left. {\left. { +\, X_{3} I_{1} (s - \xi )I_{2} (\xi )e^{{\eta_{3} y}} + X_{4} I_{1} (\xi )I_{2} (s - \xi )e^{{\eta_{4} y}} )d\xi + X_{5} H_{1} (s)e^{ - \left| s \right|y} + X_{6} H_{2} (s)e^{\left| s \right|y} } \vphantom{\int\limits_{ - \infty }^{\infty }}\right)e^{ - isx} ds} \vphantom{\int\limits_{ - \infty }^{\infty }}\right) \hfill \\ \end{gathered}$$
(A.3)
$$N_{d2} (x,y) = 0$$
(A.4)

Appendix B

$$K_{11} (x_{1} ) = \frac{1}{\pi }\int\limits_{a}^{b} {\left( {M_{1} (r_{1} ,x_{1} ) + \frac{1}{{r_{1} - x_{1} }}} \right)dr}$$
(B.1.1)
$$K_{12} (x_{1} ) = \frac{1}{\pi }\int\limits_{c}^{d} {\left(M_{1} (r_{2} ,x_{1} ) + \frac{1}{{r_{2} - x_{1} }}\right)dr_{2} }$$
(B.1.2)
$$K_{21} (x_{2} ) = \frac{1}{\pi }\int\limits_{a}^{b} {\left(M_{1} (r_{1} ,x_{2} ) + \frac{1}{{r_{1} - x_{2} }}\right)dr_{1} }$$
(B.1.3)
$$K_{22} (x_{2} ) = \frac{1}{\pi }\int\limits_{c}^{d} {\left(M_{1} (r_{2} ,x_{2} ) + \frac{1}{{r_{2} - x_{2} }}\right)dr_{2} }$$
(B.1.4)
$$L_{11} (x_{1} ) = \frac{1}{\pi }\int\limits_{a}^{b} {\left(M_{2} (r_{1} ,x_{1} ) + \frac{k - 1}{{4G}}\frac{1}{{r_{1} - x_{1} }}\right)dr_{1} }$$
(B.2.1)
$$L_{12} (x_{1} ) = \frac{1}{\pi }\int\limits_{c}^{d} {\left(M_{2} (r_{2} ,x_{1} ) + \frac{k - 1}{{4G}}\frac{1}{{r_{2} - x_{1} }}\right)dr_{2} }$$
(B.2.2)
$$L_{21} (x_{2} ) = \frac{1}{\pi }\int\limits_{a}^{b} {\left(M_{2} (r_{1} ,x_{2} ) + \frac{k - 1}{{4G}}\frac{1}{{r_{1} - x_{2} }}\right)dr_{1} }$$
(B.2.3)
$$L_{22} (x_{2} ) = \frac{1}{\pi }\int\limits_{c}^{d} {\left(M_{2} (r_{2} ,x_{2} ) + \frac{k - 1}{{4G}}\frac{1}{{r_{2} - x_{2} }}\right)dr_{2} }$$
(B.2.4)
$$M_{1} (r,x) = \int\limits_{ - \infty }^{\infty } {\left(\frac{{1 - e^{ - 2\left| s \right|h} }}{{1 + e^{ - 2\left| s \right|h} }} - 1\right)\sin (s(r - x))ds}$$
(B.3)
$$M_{2} (r,x) = \int\limits_{0}^{\infty } \left( - \frac{{(k + 1)(2{\text{e}}^{ - 2sh} - 1 - {\text{e}}^{ - 4sh} )}}{{4(4sh{\text{e}}^{ - 2sh} + 1 - {\text{e}}^{ - 4sh} )G}} - \frac{(k + 1)}{{4G}}\right)\sin (s(r - x))ds$$
(B.4)

Appendix C

$$N_{11} = \frac{{ - i(2|s|{\text{e}}^{2|s|h} h - {\text{e}}^{2|s|h} k + 2|s|h + {\text{e}}^{2|s|h} + k - 1){\text{e}}^{|s|h} }}{{2G(4|s|{\text{e}}^{2|s|h} h + {\text{e}}^{4|s|h} - 1)s}}$$
(C.1)
$$N_{12} = \frac{{(2|s|h - k - 1){\text{e}}^{3|s|h} + ( - 2|s|h - k - 1){\text{e}}^{|s|h} }}{{2G|s|(4|s|{\text{e}}^{2|s|h} h + {\text{e}}^{4|s|h} - 1)}}$$
(C.2)
$$N_{21} = \frac{{2{\text{e}}^{|s|h} ((|s|h + 1){\text{e}}^{2|s|h} + |s|h - 1)}}{{4|s|{\text{e}}^{2|s|h} h + {\text{e}}^{4|s|h} - 1}}$$
(C.3)
$$N_{22} = \frac{{2{\mkern 1mu} {\text{i}}sh({\text{e}}^{2|s|h} - 1){\text{e}}^{|s|h} }}{{4|s|{\text{e}}^{2|s|h} h + {\text{e}}^{4|s|h} - 1}}$$
(C.4)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, B., Zhou, Y. et al. Continuous contact problem of interaction between two arbitrarily positioned flat stamps on the thermoelectric material. Acta Mech 234, 4719–4732 (2023). https://doi.org/10.1007/s00707-023-03610-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03610-6

Navigation