Skip to main content
Log in

New correlations for non-Darcy flow in porous media

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a general power form of head-loss (pressure-drop) equation and the concept of shear velocity were used to study non-Darcy filtration through coarse granular materials. Using new laboratory data, the validity of four widely-used power form pressure-drop equations were evaluated. The results indicated that for the lower size of grain diameter (d ≤ 8.7 mm) the Wilkins (in: Proceedings of the 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, Christchurch, 1956) method has predicted satisfactorily the hydraulic gradient, while for the higher size of grain diameter (d ≥ 15.6 mm), the Stephenson (Rockfill in Hydraulic Engineering, Elsevier Science Publishers B.V., Amsterdam, 1979) method predicted acceptably the pressure gradient. The results also indicated that the best estimation for the Izbash coefficient a is the Wilkins method. Finally, new correlations for friction factor, shear velocity and Reynolds number as well as new threshold limits for Darcy, partially-turbulent, and fully-turbulent flow regimes are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\(A\) :

Cross-sectional area of cylinder (L2)

\(a,b\) :

Coefficients of Izbash equation (−)

C :

Constant coefficient of f - Re relationship (−)

\(d\) :

Mean diameter of the grains (L)

\(f\) :

Friction factor the porous media (−)

\(g\) :

Gravitational constant (L/T2)

\(h_{f}\) :

Pressure-loss (L)

\(i\) :

Pressure (hydraulic) gradient (−)

\(L\) :

Length of media (L)

\(M\) :

Power constant of f - Re relationship (−)

\(n\) :

Porosity of the aggregates (−)

R :

Hydraulic mean radius of the porous media (L)

Re:

Reynolds number (−)

\(V\) :

Bulk flow velocity (L/T)

X :

The mean of experimental data

x i :

The values of every step of equations

y i :

The values of every step of the experimental data

u * :

Shear velocity (L/T)

\(\rho\) :

Water density (FT2/L4)

\(\tau\) :

Tortuosity factor (−)

\(\tau_{0}\) :

Shear stress (F/L2)

\(\nu\) :

Kinematic viscosity of water (L2/T)

NOF:

Normalized objective function

RMSE:

Root mean square error

References

  1. Adler, P., Malevich, A.E., Mityushev, V.: Nonlinear correction to Darcy’s law. Acta Mech. 224, 1823–1848 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Banerjee, A., Pasupuleti, S., Singh, M.K., Kumar, G.P.: A study on the Wilkins and Forchheimer equations used in coarse granular media flow. Acta Geophys. 66, 81–91 (2018)

    Google Scholar 

  3. Banerjee, A., Pasupuleti, S., Singh, M.K., Kumar, G.P.: An investigation of parallel post-laminar flow through coarse granular porous media with the Wilkins equation. Energies 11(2), 320 (2018)

    Google Scholar 

  4. Banerjee, A., Pasupuleti, S., Singh, M.K., Dutta, S.C., Kumar, G.P.: Modelling of flow through porous media over the complete flow regime. Transp. Porous Media 129, 1–23 (2019)

    MathSciNet  Google Scholar 

  5. Barr, D.W.: Turbulent flow through porous media. Ground Water 39(5), 646–650 (2001)

    Google Scholar 

  6. Basak, P.: Non-Darcy flow and its implications to seepage problems. J. Irrig. Drain. Eng. 103(4), 459–473 (1977)

    Google Scholar 

  7. Bear, J.: Dynamics of fluids in porous media. Elsevier Science, New York (1972)

    MATH  Google Scholar 

  8. Bordier, C., Zimmer, D.: Drainage equations and non-Darcian modeling in coarse porous media or geosynthetic materials. J. Hydrol. 228, 174–187 (2000)

    Google Scholar 

  9. Burcharth, H.F., Andersen, O.H.: On the one-dimensional steady and unsteady porous flow equations. Coast. Eng. 24(3–4), 233–257 (1995)

    Google Scholar 

  10. Cheng, N.-S., Hao, Z., Tan, S.K.: Comparison of quadratic and power law for nonlinear flow through porous media. Exp. Thermal Fluid Sci. 32, 1538–1547 (2008)

    Google Scholar 

  11. Chow, V.T.: Open channel hydraulics. Mc Graw Hill Book Company, New York (1959)

    Google Scholar 

  12. Dukhan, N.: Correlations for the pressure drop for flow through metal foam. Exp. Fluids 41(4), 665–672 (2006)

    Google Scholar 

  13. Eck, B.J., Barrett, M.E., Charbeneau, R.J.: Forchheimer flow in gently sloping layers: application to drainage of porous asphalt. Water Res. Res. 48(W01530), 10 (2012). https://doi.org/10.1029/2011WR010837

    Article  Google Scholar 

  14. Ergun, S.: Fluid flow through packed columns. Chem. Eng. Progress 48(2), 89–94 (1952)

    Google Scholar 

  15. Forchheimer, P.: Wasserbewegung durch boden. Zeit. Ver. Deutsch. Ing. 45, 1781–1788 (1901)

    Google Scholar 

  16. Garga, V.K., Hansen, D., Townsend, R.D.: Considerations on the design of flow through rockfill drains. In: Proceedings of the 14th Annual British Columbia Mine Reclamation Symposium, Cranbrook, BC, Canada, 14–15 (1990)

  17. George, G.H., Hansen, D.: Conversion between quadratic and power law for non-Darcy flow. J. Hydraul. Eng. 118(5), 792–797 (1992)

    Google Scholar 

  18. Ghane, E., Fausey, N.R., Brown, L.C.: Non-Darcy flow of water through a woodchip media. J. Hydro. 519, 3400–3409 (2014)

    Google Scholar 

  19. Gikas, G.D., Yiannakopoulou, T., Tsihrintzis, V.A.: Modeling of non-point source pollution in a mediterranean drainage basin. Environ. Model. Assess. 11, 219–233 (2006)

    Google Scholar 

  20. Hansen, D.: The behavior of flowthrough rockfill dams. Ph.D. thesis, Department of Civil Engineering, University of Ottawa, Ottawa, Ontario (1992)

  21. Houben, G.: Review: hydraulics of water wells—flow laws and influence of geometry. Hydrogeol. J. (2015). https://doi.org/10.1007/s10040-0151312-8

    Article  Google Scholar 

  22. Huang, K., Wan, J.W., Chen, C.X., He, L.Q., Mei, W.B., Zhang, M.Y.: Experimental investigation on water flow in cubic arrays of spheres. J. Hydrol. 492, 61–68 (2013)

    Google Scholar 

  23. Izbash, S.V.: O filtracii v krupnozernistom materiale. Izv. Nauchno-Issled. Inst. Gidro-Tekh. (N.I.LG.), Leningrad (1931)

  24. Kumar, G.N.P., Venkataraman, P.: Non-Darcy converging flow through coarse granular media. J. Inst. Eng. (India) Civ. Eng. Div. 76, 6–11 (1995)

    Google Scholar 

  25. Li, B., Garga, V.K., Davies, M.H.: Relationships for non-Darcy flow in rockfill. J. Hydraul. Eng. 124(2), 206–212 (1998)

    Google Scholar 

  26. Li, Z., Wan, J., Huang, K., Chang, W., He, Y.: Effects of particle diameter on flow characteristics in sand columns. Int. J. Heat Mass Transf. 104, 533–536 (2017)

    Google Scholar 

  27. Martins, R.: Turbulent seepage flow through rockfill structures. J. Water Power Dam Construct. 41–45 (1990)

  28. Mathias, S., Butler, A., Zhan, H.: Approximate solutions for Forchheimer flow to a well. J. Hydraul. Eng. 134(9), 1318–1325 (2008)

    Google Scholar 

  29. Moutsopoulos, K.N.: One-dimensional unsteady inertial flow in phreatic aquifers, induced by a sudden change of the boundary head. Transp. Porous Media 70, 97–125 (2007)

    MathSciNet  Google Scholar 

  30. Moutsopoulos, K.N.: Exact and approximate analytical solutions for unsteady fully developed turbulent flow in porous media and fractures for time dependent boundary conditions. J. Hydrol. 369(1–2), 78–89 (2009)

    Google Scholar 

  31. Moutsopoulos, K.N., Papaspyros, J.N.E., Tsihrintzis, V.A.: Experimental investigation of inertial flow processes in porous media. J. Hydrol. 374, 242–254 (2009)

    Google Scholar 

  32. Moutsopoulos, K.N., Tsihrintzis, V.A.: Approximate analytical solutions of the Forchheimer equation. J. Hydrol. 309(1–4), 93–103 (2005)

    Google Scholar 

  33. Panfilov, M., Fourar, M.: Physical splitting of non-linear effects in high-velocity stable flow through porous media. Adv. Water Resour. 29(1), 30–41 (2006)

    Google Scholar 

  34. Panfilov, M., Oltean, C., Panfilova, I., Buès, M.: Singular nature of nonlinear macroscale effects in high-rate flow through porous media. C. R. Mec. 331(1), 41–48 (2003)

    MATH  Google Scholar 

  35. Salahi, M.B., Sedghi-Asl, M., Parvizi, M.: Nonlinear flow through a packed column experiment. J. Hydro. Eng. 20(9), 04015003 (2015)

    Google Scholar 

  36. Sedghi-Asl, M., Rahimi, H., Salehi, R.: Non-Darcy flow of water through a packed column test. Transp. Porous Media 101(2), 215–227 (2014)

    Google Scholar 

  37. Sedghi-Asl, M., Rahimi, H.: Adoption of Manning’s equation to 1D non-Darcy flow problems. J. Hydraul. Res. 49(6), 814–817 (2011)

    Google Scholar 

  38. Sedghi-Asl, M., Ansari, I.: Adoption of extended Dupuit-Forchheimer assumptions to non-Darcy flow problems. Transp. Porous Media. 113(3), 457–469 (2016)

    MathSciNet  Google Scholar 

  39. Sedghi-Asl, M., Farhoudi, J., Rahimi, H., Hartmann, S.: An analytical solution for 1-D non-Darcy flow slanting coarse deposits. Transp. Porous Media. 104(3), 564–579 (2014)

    Google Scholar 

  40. Sedghi-Asl, M., Rahimi, H., Farhoudi, J., Hoorfar, A.H., Hartmann, S.: One-dimensional fully-developed turbulent flow through coarse porous medium. J. Hydrol. Eng. 19(7), 1491–1496 (2014)

    Google Scholar 

  41. Sen, Z.: Nonlinear flow toward wells. J. Hydraul. Eng. 115(2), 193–209 (1989)

    Google Scholar 

  42. Skjetne, E., Auriault, J.-L.: New insights on steady, non-linear flow in porous medium. Eur. J. Mech. B/Fluid 18, 131–145 (1999)

    MATH  Google Scholar 

  43. Soni, J.P., Islam, N., Basak, P.: An experimental evaluation of non-Darcian flow in porous media. J. Hydrol. 36(3–4), 231–241 (1978)

    Google Scholar 

  44. Stephenson, D.: Rockfill in hydraulic engineering. Elsevier Science Publishers B.V, Amsterdam (1979)

    Google Scholar 

  45. Thiruvengadam, M., Pradip Kumar, G.N.: Validity of Forchheimer equation in radial flow through coarse granular media. J. Eng. Mech. 123, 696–704 (1997)

    Google Scholar 

  46. Tzelepis, V., Moutsopoulos, K.M., Papaspyros, J.N.E., Tsishrintzis, V.A.: Experimental investigation of flow behavior in smooth and rough artificial fractures. J. Hydrol. 521, 108–118 (2015)

    Google Scholar 

  47. van Lopik, J.H., Snoeijers, R., van Dooren, T.C.G.W., Raoof, A., Schotting, R.J.: The effect of grain size distribution on nonlinear flow behavior in sandy porous media. Transp. Porous Med. 120(1), 37–66 (2017)

    MathSciNet  Google Scholar 

  48. van Lopik, J.H., Zazai, L., Hartog, N., Schotting, R.J.: Nonlinear flow behavior in packed beds of natural and variably graded granular materials. Transp. Porous Med. 131, 957–983 (2020)

    MathSciNet  Google Scholar 

  49. Venkataraman, P., Rao, P.R.M.: Darcian, transitional and turbulent flow through porous media. J. Hydraul. Eng. 124, 840–846 (1998)

    Google Scholar 

  50. Watanabe, H.: Comments on Izbash’s equation. J. Hydrol. 58, 389–397 (1982)

    Google Scholar 

  51. Wen, Z., Huang, G., Zhan, H.: Non-Darcian flow in a single confined vertical fracture toward a well. J. Hydrol. 330(3–4), 698–708 (2006)

    Google Scholar 

  52. Wen, Z., Huang, G., Zhan, H.: An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Adv. Water Resour. 31, 44–55 (2008)

    Google Scholar 

  53. Wilkins J.K.: Flow of water through rockfill and its application to the design of dams. In: Proceedings of the 2nd Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, Canterbury University College, pp. 141–149. Christchurch, New Zealand (1956)

  54. Wilkins, J.K.: Flow of water through rockfill and its application to the design of dams. N. Z. Eng. 10, 382–387 (1955)

    Google Scholar 

  55. Yamada, H., Nakamura, F., Watanabe, Y., Murakami, M., Nogami, T.: Measuring hydraulic permeability in a streambed using the packer test. Hydrol. Process. 19, 2507–2524 (2005)

    Google Scholar 

  56. Yu, B.M., Li, J.H.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21, 1569–1571 (2004)

    Google Scholar 

  57. Zeng, Z., Grigg, R.: A criterion for non-Darcy flow in porous media. Transp. Porous Media 63, 57–69 (2006)

    Google Scholar 

  58. Zhaodong, C., Kuncan, Z., Xiao, W., Fuling, H., Chong, G., Juanjuan, B.: Derivation and validation of a new porous media resistance formula based on a tube-sphere model. Ind. Eng. Chem. Res. 59(40), 18170–18179 (2020). https://doi.org/10.1021/acs.iecr.0c02197

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their deepest gratitude to Yasouj University and the University of Tehran for the support of the research. Unfortunately, Prof. Hassan Rahimi (1946–2022), the late professor of the University of Tehran, and the third author of this article, passed away. His efforts to publish this article are commendable. Rest in Peace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Sedghi-Asl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedghi-Asl, M., Afrasiabi, B. & Rahimi, H. New correlations for non-Darcy flow in porous media. Acta Mech 234, 4559–4572 (2023). https://doi.org/10.1007/s00707-023-03586-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03586-3

Navigation