Skip to main content
Log in

Numerical simulation for quasi-static crack growth and dynamic crack branching by coupled state-based PD and XFEM

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a novel framework combining the state-based peridynamics (SBPD) with the extended finite element method (XFEM) for crack propagation in two-dimensional solids. Numerical examination is conducted fulfilling both the quasi-static and time-dependent loading conditions. The computational domain is partitioned into two regions: (a) SPBD region: the vicinity of crack tips and potential region where the crack is likely to propagate, and (b) XFEM region: the area behind the crack tip and the rest of the body. The salient features of the developed framework include: (a) avoiding requirement of a priori knowledge of enrichment functions like the conventional XFEM; (b) without fracture criteria for crack propagation; (c) no restriction on the value of Poisson’s ratio like the bond-based peridynamics; and (d) higher computational efficiency than the pure peridynamics. The efficiency and accuracy of the proposed framework are systematically demonstrated through benchmark examples involving quasi-static crack growth and dynamic crack branching problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diana, V., Carvelli, V.: An electromechanical micropolar peridynamic model. Comput. Methods Appl. Mech. Eng. 365, 112998 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gerstle, W., Sau, N., Silling, S.: Peridynamic modeling of concrete structures. Nucl. Eng. Des. 237(12–13), 1250–1258 (2007)

    Article  Google Scholar 

  4. Bazazzadeh, S., Morandini, M., Zaccariotto, M., Galvanetto, U.: Simulation of chemo-thermo-mechanical problems in cement-based materials with Peridynamics. Meccanica 56, 2357–2379 (2021)

    Article  MathSciNet  Google Scholar 

  5. Huang, D., Zhang, Q., Qiao, P.: Damage and progressive failure of concrete structures using non-local peridynamic modeling. Sci. China Technol. Sci. 54(3), 591–596 (2011)

    Article  Google Scholar 

  6. Huang, D., Lu, G., Qiao, P.: An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int. J. Mech. Sci. 94, 111–122 (2015)

    Article  Google Scholar 

  7. Rabczuk, T., Ren, H.: A peridynamics formulation for quasi-static fracture and contact in rock. Eng. Geol. 225, 42–48 (2017)

    Article  Google Scholar 

  8. Gu, X., Zhang, Q.: A modified conjugated bond-based peridynamic analysis for impact failure of concrete gravity dam. Meccanica 55(3), 547–566 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ni, T., Zaccariotto, M., Zhu, Q., Galvanetto, U.: Static solution of crack propagation problems in Peridynamics. Comput. Methods Appl. Mech. Eng. 346, 126–151 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Madenci, E., Barut, A., Futch, M.: Peridynamic differential operator and its applications. Comput. Methods Appl. Mech. Eng. 304, 408–451 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nowruzpour, M., Reddy, J.N.: Unification of local and nonlocal models within a stable integral formulation for analysis of defects. Int. J. Eng. Sci. 132, 45–59 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sarkar, S., Nowruzpour, M., Reddy, J.N., Srinivasa, A.R.: A discrete lagrangian based direct approach to macroscopic modelling. J. Mech. Phys. Solids 98, 172–180 (2017)

    Article  MathSciNet  Google Scholar 

  13. Zhu, Q., Ni, T.: Peridynamic formulations enriched with bond rotation effects. Int. J. Eng. Sci. 121, 118–129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, W., Zhu, Q., Ni, T.: A local strain-based implementation strategy for the extended peridynamic model with bond rotation. Comput. Methods Appl. Mech. Eng. 358, 112625 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ni, T., Pesavento, F., Zaccariotto, M., Galvanetto, U., Zhu, Q., Schrefler, B.: Hybrid FEM and peridynamic simulation of hydraulic fracture propagation in saturated porous media. Comput. Methods Appl. Mech. Eng. 366, 113101 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, S., Fang, G., Liang, J., Fu, M.: A coupling method of non-ordinary state-based peridynamics and finite element method. Eur. J. Mech. A Solids 85, 104075 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Littlewood, D. J.: Simulation of dynamic fracture using peridynamics, finite element modeling, and contact, In Proceedings of the ASME 2010 International Mechanical Engineering Congress & Exposition 44465 (2010) 209–217

  18. Huang, X., Bie, Z., Wang, L., Jin, Y., Liu, X., Su, G., He, X.: Finite element method of bond-based peridynamics and its ABAQUS implementation. Eng. Fract. Mech. 206, 408–426 (2019)

    Article  Google Scholar 

  19. Fang, G., Liu, S., Fu, M., Wang, B., Wu, Z., Liang, J.: A method to couple state-based peridynamics and finite element method for crack propagation problem. Mech. Res. Commun. 95, 89–95 (2019)

    Article  Google Scholar 

  20. Yang, Y., Liu, Y.: Modeling of cracks in two-dimensional elastic bodies by coupling the boundary element method with peridynamics. Int. J. Solids Struct. 217–218, 74–89 (2021)

    Article  Google Scholar 

  21. Liang, X., Wang, L., Xu, J., Wang, J.: The boundary element method of Peridynamics. Int. J. Numer. Meth. Eng. 20(122), 5558–5593 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kan, X.Y., Zhang, A.M., Yan, J.L., Wu, W.B., Liu, Y.L.: Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model. J. Fluids Struct. 96, 103016 (2020)

    Article  Google Scholar 

  23. Xia, Y., Meng, X., Shen, G., Zheng, G., Hu, P.: Isogeometric analysis of cracks with peridynamics. Comput. Methods Appl. Mech. Eng. 377, 113700 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Behzadinasab, M. Hillman, Y. Bazilevs, IGA-PD penalty-based coupling for immersed air-blast fluid-structure interaction: a simple and effective solution for fracture and fragmentation, preprint arXiv:2111.03767V1 (2021)

  25. Behzadinasab, M., Moutsanidis, G., Trask, N., Foster, J.T., Bazilevs, Y.: Coupling of IGA and peridynamics for air-blast fluid-structure interaction using an immersed approach. Forces Mech. 4, 100045 (2021)

    Article  Google Scholar 

  26. Dorduncu, M., Barut, A., Madenci, E., Phan, N. D.: Peridynamic augmented XFEM, in: 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2017, p. 0656

  27. Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and peridynamics for brittle fracture simulation-part I: feasibility and effectiveness. Comput. Mech. 66(1), 103–122 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Giannakeas, I.N., Papathanasiou, T.K., Fallah, A.S., Bahai, H.: Coupling XFEM and Peridynamics for brittle fracture simulation: part II-adaptive relocation strategy. Comput. Mech. 66(3), 683–705 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, S., Fang, G., Liang, J., Lv, D.: A coupling model of XFEM/peridynamics for 2D dynamic crack propagation and branching problems. Theoret. Appl. Fract. Mech. 108, 102573 (2020)

    Article  Google Scholar 

  30. Chen, B., Yu, T., Natarajan, S., Zhang, Q., Bui, T.Q.: Three-dimensional dynamic and quasi-static crack growth by a hybrid XFEM-peridynamics approach. Eng. Fract. Mech. 261, 108205 (2022)

    Article  Google Scholar 

  31. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)

    Article  Google Scholar 

  32. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tong, Y., Shen, W.-Q., Shao, J.-F.: An adaptive coupling method of state-based peridynamics theory and finite element method for modeling progressive failure process in cohesive materials. Comput. Methods Appl. Mech. Eng. 370, 113248 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Madenci, E., Oterkus, E.: Peridynamic theory and its applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  35. Liu, P., Yu, T.T., Bui, T.Q., Zhang, C.: Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Comput. Mater. Sci. 69, 542–558 (2013)

    Article  Google Scholar 

  36. Yu, T.: Extended finite element method-theory, application and programming. Science Press, Beijing (2014)

    Google Scholar 

  37. Ayatollahi, M., Aliha, M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)

    Article  Google Scholar 

  38. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162(1), 229–244 (2010)

    Article  MATH  Google Scholar 

  39. Zaccariotto, M., Mudric, T., Tomasi, D., Shojaei, A., Galvanetto, U.: Coupling of FEM meshes with Peridynamic grids. Comput. Methods Appl. Mech. Eng. 330, 471–497 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhou, X., Wang, Y., Qian, Q.: Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur. J. Mech. A Solids 60, 277–299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Braun, M., Fernández-Sáez, J.: A new 2D discrete model applied to dynamic crack propagation in brittle materials. Int. J. Solids Struct. 51(21), 3787–3797 (2014)

    Article  Google Scholar 

  42. Kosteski, L., D’Ambra, R.B., Iturrioz, I.: Crack propagation in elastic solids using the truss-like discrete element method. Int. J. Fract. 174(2), 139–161 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11932006). The financial supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantang Yu or Tinh Quoc Bui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Yu, T., Natarajan, S. et al. Numerical simulation for quasi-static crack growth and dynamic crack branching by coupled state-based PD and XFEM. Acta Mech 234, 3605–3622 (2023). https://doi.org/10.1007/s00707-023-03585-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03585-4

Navigation