Skip to main content
Log in

A new continuum model of a class of elastic metamaterials with local rotational effects

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Elastic metamaterials are typically synthesized in the form of a series of periodic unit cells, which are smaller than the typical phenomenological length scale. The development of continuum models capable of capturing the size effect of the unit cells has proven to be notoriously difficult. This paper focuses on the development of a novel 2-D continuum model capable of capturing the dynamic behaviour of a class of elastic metamaterials in the long wavelength limit. A new constitutive relation incorporating the local rotational effects is proposed, and a representative discrete model using linear Hookean springs and rigid disks is introduced to generate a continuum metamaterial model revealing the newly proposed constitutive relation. The new model is compared with classical models such as the micropolar continuum model, and other more recently proposed 1-D models for these types of elastic metamaterials. General 2-D wave propagation is then explored analytically using the newly developed model through analysis of the dispersion relations for both longitudinal and transverse waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ren, C., Yang, D., Quin, H.: Mechanical performance of multidirectional buckling-based negative stiffness metamaterials: an analytical and numerical study. Materials 11, 1078 (2018)

    Article  Google Scholar 

  2. Tan, X., Wang, B., Zhu, S., Chen, S., Yao, K., Peifei, X., Linzhi, W., Sun, Y.: Novel multidirectional negative stiffness mechanical metamaterials. Smart Mater. Struct. 29, 015037 (2019)

    Article  Google Scholar 

  3. Zhakatayev, A., Kappasov, Z., Varol, H.A.: Analytical modeling and design of negative stiffness honeycombs. Smart Mater. Struct. 29, 045024 (2020)

    Article  Google Scholar 

  4. Jaberzadeh, M., Li, B., Tan, K.T.: Wave propagation in an elastic metamaterial with anisotropic effective mass density. Wave Motion 89, 131–141 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, D., Gao, R., Dong, L., Lam, W.-K., Zhang, F.: A novel 3D re-entrant unit cell structure with negative Poisson’s ratio and tunable stiffness. Smart Mater. Struct. 29, 045015 (2020)

    Article  Google Scholar 

  6. Shaat, E.M., Dhaba, A.R.: On the equivalent shear modulus of composite metamaterials. Compos. B Eng. 172, 506–515 (2019)

    Article  Google Scholar 

  7. Wang, W., Bonello, B., Djafari-Rouhani, A., Pennec, Y., Zhao, J.: Elastic stubbed metamaterial plate with torsional resonances. Ultrasonics 106, 106142 (2020)

    Article  Google Scholar 

  8. Dudek, K.K., Gatt, R., Grima, J.N.: 3D composite metamaterial with magnetic inclusions exhibiting negative stiffness and auxetic behaviour. Mater. Des. 187, 108403 (2020)

    Article  Google Scholar 

  9. Li, Z., Wang, C., Wang, X.: Modelling of elastic metamaterials with negative mass and modulus based on translational resonance. Int. J. Solids Struct. 162, 271–284 (2019)

    Article  Google Scholar 

  10. Li, Z., Huan, H., Wang, X.: A new two-dimensional elastic metamaterial system with multiple local resonances. Int. J. Mech. Sci. 149, 273–284 (2018)

    Article  Google Scholar 

  11. Li, Z., Wang, X.: On the dynamic behaviour of a two-dimensional elastic metamaterial system. Int. J. Solids Struct. 78–79, 174–181 (2016)

    Article  Google Scholar 

  12. Chen, X., Ji, Q., Wei, J., Tan, H., Jianxin, Yu., Zheng, P., Laude, V., Kadic, M.: Light-weight shell-lattice metamaterials for mechanical shock absorption. Int. J. Mech. Sci. 169, 105288 (2020)

    Article  Google Scholar 

  13. Jianxing, H., Yu, T.X., Yin, S., Jun, X.: Low-speed impact mitigation of recoverable DNA-inspired double helical metamaterials. Int. J. Mech. Sci. 161–162, 105050 (2019)

    Google Scholar 

  14. Zhong, R., Minghui, F., Chen, X., Zheng, B., Lingling, H.: A novel three-dimensional mechanical metamaterial with compression–torsion properties. Compos. Struct. 226, 111232 (2019)

    Article  Google Scholar 

  15. Tan, X., Wang, B., Yao, K., Zhu, S., Chen, S., Peifei, X., Wang, L., Sun, Y.: Novel multi-stable mechanical metamaterials for trapping energy through shear deformation. Int. J. Mech. Sci. 164, 105168 (2019)

    Article  Google Scholar 

  16. Zhen Li, H., Zhang, Y.L., Lee, H.P.: Dual-functional metamaterial with vibration isolation and heat flux guiding. J. Sound Vib. 469, 115122 (2020)

    Article  Google Scholar 

  17. Lingling, W., Wang, Y., Zhai, Z., Yang, Y., Krishnaraju, D., Junqiang, L., Fugen, W., Wang, Q., Jiang, H.: Mechanical metamaterials for full-band mechanical wave shielding. Appl. Mater. Today 20, 100671 (2020)

    Article  Google Scholar 

  18. Kumar, S., Xiang, B., Lee, H.P.: Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation. Appl. Acoust. 159, 107088 (2020)

    Article  Google Scholar 

  19. Liao, Y., Zhou, X., Chen, Y., Huang, G.: Adaptive metamaterials for broadband sound absorption at low frequencies. Smart Mater. Struct. 28, 025005 (2019)

    Article  Google Scholar 

  20. Wang, X., Luo, U., Zhao, H., Huang, Z.: Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials. App. Phys. Lett. 112, 021901 (2018)

    Article  Google Scholar 

  21. Huang, K.-X., Shui, G.-S., Wang, Y.-Z., Wang, Y.-S.: Discrete scattering and meta-arrest of locally resonant elastic wave metamaterials with a semi-infinite crack. Proc. R. Soc. Lond. Ser. A. 477, 20210356 (2021)

    MathSciNet  Google Scholar 

  22. Huang, K.-X., Shui, G.-S., Wang, Y.-Z., Wang, Y.-S.: Enhanced fracture resistance induced by coupling multiple degrees of freedom in elastic wave metamaterials with local resonators. J. Elast. 144, 33–53 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, K.-X., Shui, G.-S., Wang, Y.-Z., Wang, Y.-S.: Meta-arrest of a fast propagating crack in elastic wave metamaterials with local resonators. Mech. Mater. 148, 103497 (2020)

    Article  Google Scholar 

  24. Oyelade, A.O., Sadiq, O.M., Ogundalu, O.A., Ojoko, N.K.: On the dynamic properties of metamaterials in civil engineering structures. IOP Conf. Ser. Mater. Sci. Eng. 640, 012045 (2019)

    Article  Google Scholar 

  25. Wu, L., Geng, Q., Li, Y.: A locally resonant elastic metamaterial based on coupled vibration of internal liquid and coating layer. J. Sound Vib. 468, 115102 (2020)

    Article  Google Scholar 

  26. Xianchen, X., Barnhart, M.V., Fang, X., Wen, J., Chen, Y., Huang, G.: A nonlinear dissipative elastic metamaterial for broadband wave mitigation. Int. J. Mech. Sci. 164, 105159 (2019)

    Article  Google Scholar 

  27. Yang, H., Abali, B.E., Timofeev, D., Muller, W.H.: Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Contin. Mech. Thermodyn. 32, 1251–1270 (2019)

    Article  MathSciNet  Google Scholar 

  28. Willis, J.R.: Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion 3, 1–11 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Srivastava, A.: Elastic metamaterials and dynamic homogenization: a review. Int. J. Smart Nano Mater. 6, 41–60 (2015)

    Article  Google Scholar 

  30. Pernas-Salomón, R., Shmuel, G.: Symmetry breaking creates electro-momentum coupling in piezoelectric metamaterials. J. Mech. Phys. Solids 134, 103770 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Muhafra, A., Kosta, M., Torrent, D., Pernas-Salomon, R., Shmuel, G.: Homogenization of piezoelectric planar Willis materials under going antiplane shear. Wave Motion 108, 102833 (2022)

    Article  MATH  Google Scholar 

  32. Eugster, S.R., Dell’Isola, F., Steigmann, D.J.: Continuum theory for mechanical metamaterials with a cubic lattice substructure. Math. Mech. Complex Syst. 7, 75–98 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Porubov, A.V., Grekova, E.F.: On nonlinear modeling of an acoustic metamaterial. Mech. Res. Commun. 103, 103464 (2020)

    Article  Google Scholar 

  34. Chen, Y., Frenzel, T., Guenneau, S., Kadic, M., Wegener, M.: Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity. J. Mech. Phys. Solids 137, 103877 (2020)

    Article  MathSciNet  Google Scholar 

  35. Schiavone, A., Li, Z., Wang, X.: Modeling and analysis of the transient behaviour of an elastic metamaterial as a generalized cosserat continuum. J. Appl. Mech. 88(9), 091003 (2021)

    Article  Google Scholar 

  36. Schiavone, A., Wang, X.: Continuous modelling of a class of periodic elastic metamaterials with local rotations. Z. Angew. Math. Phys. 73, 29 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hassanpour, S., Heppler, G.R.: Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations. Math. Mech. Solids 22(2), 224–242 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, X.: Dynamic behaviour of a metamaterial system with negative mass and modulus. Int. J. Solids Struct. 51(7–8), 1534–1541 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta Innovates (AI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiavone, A., Wang, X. A new continuum model of a class of elastic metamaterials with local rotational effects. Acta Mech 234, 3709–3723 (2023). https://doi.org/10.1007/s00707-023-03584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03584-5

Navigation