Skip to main content
Log in

Study of vibrations in micro-scale piezothermoelastic beam resonator utilising modified couple stress theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper deals with the study of vibrations in piezothermoelastic microbeam resonator using modified couple stress theory. The closed form expressions for deflection, electric potential and temperature distribution for the beam have been derived. The solution is presented under clamped-free boundary condition. Analytical expressions for thermoelastic damping, frequency shift and attenuation are obtained and effects of electric potential, thermal relaxation time, temperature, beam dimensions and couple stress have been depicted graphically. The numerical results are presented with the help of MATLAB programming software in case of a lead zirconate titanate (PZT)-5A material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yurke, B., Greywall, D.S., Parqellis, A.N., Busch, P.A.: Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. Phys. Rev. A 51, 4211–4229 (1995). https://doi.org/10.1103/PhysRevA.51.4211

    Article  Google Scholar 

  2. Cleland, A.N., Roukes, M.L.: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals. Appl. Phys. Lett. 69, 2653–2655 (1996). https://doi.org/10.1063/1.117548

    Article  Google Scholar 

  3. Lun, F.Y., Zhang, P., Gao, F.B., Jia, H.G.: Design and fabrication of micro-optomechanical vibration sensor. Microfabr. Technol. 120(1), 61–64 (2006)

    Google Scholar 

  4. Anton, S.R., Sodano, H.A.: A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1 (2007). https://doi.org/10.1088/0964-1726/16/3/R01

    Article  Google Scholar 

  5. Shaikh, F.K., Zeadally, S.: Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–54 (2016). https://doi.org/10.1016/j.rser.2015.11.010

    Article  Google Scholar 

  6. Safaei, M., Sodano, H., Anton, S.: A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart Mater. Struct. 28(11), 113001 (2019). https://doi.org/10.1088/1361-665X/ab36e4

    Article  Google Scholar 

  7. Zener, C.: Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52(3), 230–235 (1937). https://doi.org/10.1103/PhysRev.52.230

    Article  MATH  Google Scholar 

  8. Zener, C.: Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53(1), 90–99 (1938). https://doi.org/10.1103/PhysRev.53.90

    Article  MATH  Google Scholar 

  9. Zener, C., Otis, W., Nuckolls, R.: Internal friction in solids III. Experimental demonstration of thermoelastic internal friction. Phys. Rev. 53(1), 100–101 (1938). https://doi.org/10.1103/PhysRev.53.100

    Article  MATH  Google Scholar 

  10. Duwel, A., Gorman, J., Weinstein, M., Borenstein, J., Warp, P.: Experimental study of thermoelastic damping in MEMS gyros. Sens. Act, A 103, 70–75 (2003). https://doi.org/10.1016/S0924-4247(02)00318-7

    Article  Google Scholar 

  11. Evoy, S., Oikhovets, A., Sekaric, L., Parpia, J.M., Craighead, H.G., Carr, D.W.: Temperature dependent internal friction in silicon nano-electromechanical systems. Appl. Phys. Lett. 77, 2397–2399 (2000). https://doi.org/10.1063/1.1316071

    Article  Google Scholar 

  12. Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro- and nano mechanical systems. Phys. Rev. B 61, 5600–5609 (2000). https://doi.org/10.1103/PhysRevB.61.5600

    Article  Google Scholar 

  13. Prabhakar, S., Paidousis, M.P., Vengallatore, S.: Analysis of frequency shifts due to thermoelastic coupling inflexural-mode micromechanical and nanomechanical resonators. J. Sound Vib. 323, 385–396 (2009). https://doi.org/10.1016/j.jsv.2008.12.010

    Article  Google Scholar 

  14. Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro-/nano-scale beam resonators with voids. J. Sound Vib. 330, 2964–2977 (2011). https://doi.org/10.1016/j.jsv.2011.01.012

    Article  Google Scholar 

  15. Rezazadeh, G., Vahdat, A.S., Pesteii, S.M., Farzi, B.: Study of thermoelastic damping in capacitive micro-beam resonators using hyperbolic heat conduction model. Sens. Trans. J. 108(9), 54–72 (2009)

    Google Scholar 

  16. Vahdat, A.S., Rezazadeh, G.: Effect of axial and residual stresses on thermoelastic damping in capacitive microbeam resonators. J. Frankl. Inst. 348, 622–639 (2011). https://doi.org/10.1016/j.jfranklin.2011.01.007

    Article  MATH  Google Scholar 

  17. Curie, J., Curie, P.: Developpement, par pression, dele’le ectricide Polaire dans les cristaux he’ miedres a’ faces inclinies. Comptes Rendus de ll Academie des Sci. 91, 294–295 (1880)

    Google Scholar 

  18. Mindlin, R.D.: On the equations of motion of piezoelectric crystals. In: Radok, J (ed.) Problem of Continuum Mechanics Contributions in Honor of the 70th Birthday of NI Muskhelishvili. Philadelphia, PA: SIAM.70, 282–290 (1961a)

  19. Mindlin, R.D.: Equation of high frequency vibrations of thermopiezoelectric plates. In: Parkus, H. (ed.) Interactions in Elastic Solids. Springer-Verlag, Vienna (1979)

    Google Scholar 

  20. Nowacki, W.: Some general theorems of thermo-piezoelectricity. J. Thermal Stresses. 1, 171–182 (1978). https://doi.org/10.1080/01495737808926940

    Article  Google Scholar 

  21. Nowacki, W.: Foundation of linear piezoelectricity, In Parkus, H. (Ed.), Interactions in Elastic Solids, Springer, Wein, Chapter 1. (1979b)

  22. Nowacki, W.: Mathematical models of phenomenological piezoelectricity, in New Problems in Mechanicsof Continua 0. Brulin and R. Hsieh, (eds.), pp. 30-50, University of Waterloo Press, Ontario. (1983c)

  23. Chandrasekharaiah, D.: A temperature-rate-dependent theory of thermopiezoelectricity. J. Therm. Stresses 7, 293–306 (1984). https://doi.org/10.1080/01495738408942213

    Article  MathSciNet  Google Scholar 

  24. Voigt, W.: Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle (Theoretical Studies on the Elasticity Relationships of Crystals). Abh. Gesch. Wissenschaften, 34 (1887)

  25. Cosserat, E., Cosserat, F.: Théorie des corps déformables (Theory of Deformable Bodies). A. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  26. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962). https://doi.org/10.1007/BF00253945

    Article  MathSciNet  MATH  Google Scholar 

  27. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  MATH  Google Scholar 

  28. Koiter, W.T.: Couple stresses in the theory of elasticity, I and II. Proc. Ned. Akad. Wet. B 67, 17–44 (1963)

    MathSciNet  MATH  Google Scholar 

  29. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964). https://doi.org/10.1007/BF00248490

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  MATH  Google Scholar 

  31. Park, S.K., Gao, X.: A new Bernoulli-Euler beam model based on a modified couple stress theory. J. Micromech. Microeng. 16(11), 2355–2359 (2006). https://doi.org/10.1088/0960-1317/16/11/015

    Article  Google Scholar 

  32. Asghari, M., Kahrobaiyan, M.H., Ahmadian, M.T.: A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48(12), 1749–1761 (2010). https://doi.org/10.1016/j.ijengsci.2010.09.025

    Article  MathSciNet  MATH  Google Scholar 

  33. Asghari, M., Taati, E.: A size-dependent model for functionally graded micro-plates for mechanical analyses. J. Vib. Control 19(11), 1614–1632 (2012). https://doi.org/10.1177/1077546312442563

    Article  MathSciNet  Google Scholar 

  34. Şimşek, M., Reddy, J.N.: Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int. J. Eng. Sci. 64, 37–53 (2013). https://doi.org/10.1016/j.ijengsci.2012.12.002

    Article  MathSciNet  MATH  Google Scholar 

  35. Krysko, A.V., Awrejcewicz, J., Zhigalov, M.V., Pavlov, S.: Nonlinear behaviour of different flexible size-dependent beams models based on the modified couple stress theory. Part 2. Chaotic dynamics of flexible beams. Int. J. Non Linear Mech. 93, 106–121 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.03.006

    Article  Google Scholar 

  36. Krysko, A.V., Awrejcewicz, J., Pavlov, S., Zhigalov, M.V.: Mathematical model of a three-layer micro- and nano-beams based on the hypotheses of the Grigolyuk-Chulkov and the modified couple stress theory. Int. J. Solids Str. 117, 39–50 (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.011

    Article  Google Scholar 

  37. Sharma, J.N., Pal, M., Chand, D.: Propagation characteristics of Rayleigh waves in transversely isotropic piezothermoelastic materials. J. Sound Vib. 284, 227–248 (2005)

    Article  Google Scholar 

  38. Kong, S., Zhou, S., Nie, Z., Wang, K.: The size-dependent natural frequency of Bernoulli- Euler micro-beams. Int. J. Eng. Sci. 46(5), 427–37 (2008). https://doi.org/10.1016/j.ijengsci.2007.10.002

    Article  MATH  Google Scholar 

  39. Wang, B., Zhao, J., Zhou, S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A. Solids 29(4), 591–99 (2010). https://doi.org/10.1016/j.euromechsol.2009.12.005

    Article  MATH  Google Scholar 

  40. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V., Sahmani, S.: Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos. Struct. 100, 385–397 (2013). https://doi.org/10.1016/j.compstruct.2012.12.048

    Article  Google Scholar 

  41. Reddy, N.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011). https://doi.org/10.1016/j.jmps.2011.06.008

    Article  MathSciNet  MATH  Google Scholar 

  42. Krysko, V.A., Awrejcewicz, J., Kutepov, I.E., Zagniboroda, N.A., Papkova, I.V., Serebryakov, A.V., Krysko, A.V.: Chaotic dynamics of flexible beams with piezoelectric and temperature phenomena. Phys. Lett. A 377, 2058–2061 (2013). https://doi.org/10.1016/j.physleta.2013.06.040

    Article  MathSciNet  Google Scholar 

  43. Asghari, M., Kahrobaiyan, M.H., Nikfar, M., Ahmadian, M.T.: A size-dependent nonlinear Timoshenko microbeam model based on the strain gradient theory. Acta Mech. 223(6), 1233–49 (2012). https://doi.org/10.1007/s00707-012-0625-0

    Article  MathSciNet  MATH  Google Scholar 

  44. Ghayesh, M., Farokhi, H., Amabili, M.: Nonlinear dynamics of a micro-scale beam based on the modified couple stress theory. Compos. B Eng. 50, 318–324 (2013). https://doi.org/10.1016/J.COMPOSITESB.2013.02.021

    Article  MATH  Google Scholar 

  45. Awrejcewicz, J., Krysko, V.A., Pavlov, S.P., Zhigalov, M.V., Kalutsky, L.A., Krysko, A.V.: Thermoelastic vibrations of a Timoshenko microbeam based on the modified couple stress theory. Nonlinear Dyn. 99, 919–943 (2020). https://doi.org/10.1007/s11071-019-04976-w

    Article  MATH  Google Scholar 

  46. Krysko, V.A., Awrejcewicz, J., Kutepov, I.E., Babenkova, T.V., Krysko, V.: Size-dependent non-linear dynamics of curvilinear flexible beams in a temperature field. Appl. Math. Model. 67, 283–296 (2019). https://doi.org/10.1016/j.apm.2018.10.026

    Article  MathSciNet  MATH  Google Scholar 

  47. Grover, D., Sharma, J.N.: Transverse vibrations in piezothermoelastic beam resonators. J. Int. Mater. Sys. Str. 27(1), 77–84 (2011). https://doi.org/10.1177/1045389X11430740

    Article  Google Scholar 

  48. Sun, Y., Fang, D., Soh, A.K.: Thermoelastic damping in micro-beam resonators. Int. J. Solids Str. 43(10), 3213–3229 (2006). https://doi.org/10.1016/j.ijsolstr.2005.08.011

    Article  MATH  Google Scholar 

  49. Sharma, J.N., Pal, M., Chand, D.: Three dimensional vibration analysis of a piezothermoelastic cylindrical panel. Int. J. Eng. Sci. 42, 1655–1673 (2004). https://doi.org/10.1016/j.ijengsci.2004.01.006

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Arti) is thankful to University Grants Commission (UGC) for sanctioning SRF scholarship. The authors are also thankful to the unknown reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arti Duhan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial and personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahrawat, R.K., Duhan, A. & Kumar, K. Study of vibrations in micro-scale piezothermoelastic beam resonator utilising modified couple stress theory. Acta Mech 234, 3557–3573 (2023). https://doi.org/10.1007/s00707-023-03575-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03575-6

Navigation