Skip to main content
Log in

Eccentric impact of a submillimeter sphere on droplet surface under electric field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The process of a submillimeter sphere eccentric impacting a single droplet under electric field is experimentally investigated by using high-speed micrographic techniques in this paper. The spheres are released at a fixed height to impact different positions of droplets. With the increase in electric field intensity, the impact behavior evolves from oscillation mode to submergence mode. The trajectory of the sphere deviates from the impact direction affected by the eccentric impact. Each mode can be divided into three stages: slamming, cavity developing, and reverting. In the slamming stage, the sphere is decelerated by hydrodynamic forces where the kinetic energy loss increases with the increase in Weber number We. Surface tension becomes the dominant force in the cavity developing stage due to the expanding cavity. The impact angle \(\alpha \) and We show little influence on the expanding speed; thereinto We has a significant effect on the limit diameter of the cavity. The cavity with different \(\alpha \) and We reaches a peak value near the critical state of the impact angle of 90 degrees. A scaling law is constructed to obtain the transitional boundary between the impact modes based on dimensional analysis and data rearrangement. The electric force is mainly used to accelerate the sphere in the gas phase and has little influence on the solid–liquid interaction behavior after contacting the droplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He, C., Liu, C., Chen, R., Meng, X., Wang, W., Ji, J., Kang, L., Liang, J., Li, X., Liu, Y., et al.: Fine particulate matter air pollution and under-5 children mortality in china: a national time-stratified case-crossover study. Environ. Int. 159, 107022 (2022)

    Article  Google Scholar 

  2. Tessum, M.W., Raynor, P.C.: Effects of spray surfactant and particle charge on respirable coal dust capture. Saf. Health Work 8(3), 296–305 (2017)

    Article  Google Scholar 

  3. Teng, C., Li, J.: Performance of reduction on particle emission by combining the charged water drop atomization and electric field in wet electrostatic precipitator. Process Saf. Environ. Prot. 155, 543–554 (2021)

    Article  Google Scholar 

  4. Di Natale, F., Carotenuto, C., Parisi, A., Flagiello, D., Lancia, A.: Wet electrostatic scrubbing for flue gas treatment. Fuel 325, 124888 (2022)

    Article  Google Scholar 

  5. Wang, A., Song, Q., Ji, B., Yao, Q.: Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet. Phys. Rev. E 92(6), 063031 (2015)

    Article  Google Scholar 

  6. Ji, B., Song, Q., Yao, Q.: Numerical study of hydrophobic micron particle’s impaction on liquid surface. Phys. Fluids 29(7), 077102 (2017)

    Article  Google Scholar 

  7. Lee, D.-G., Kim, H.-Y.: Impact of a superhydrophobic sphere onto water. Langmuir 24(1), 142–145 (2008)

    Article  Google Scholar 

  8. Lee, D.-G., Kim, H.-Y.: Sinking of small sphere at low Reynolds number through interface. Phys. Fluids 23(7), 072104 (2011)

    Article  Google Scholar 

  9. Truscott, T.T., Epps, B.P., Belden, J.: Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355–378 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang, Y., Bai, T., Gao, Y., Guan, L.: Water entry of a constraint posture body under different entry angles and ventilation rates. Ocean Eng. 153, 53–59 (2018)

    Article  Google Scholar 

  11. Louf, J.-F., Chang, B., Eshraghi, J., Mituniewicz, A., Vlachos, P.P., Jung, S.: Cavity ripple dynamics after pinch-off. J. Fluid Mech. 850, 611–623 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aristoff, J.M., Bush, J.W.: Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 45–78 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Aristoff, J.M., Truscott, T.T., Techet, A.H., Bush, J.W.: The water entry of decelerating spheres. Phys. Fluids 22(3), 032102 (2010)

    Article  MATH  Google Scholar 

  14. Watson, D.A., Bom, J.M., Weinberg, M.P., Souchik, C.J., Dickerson, A.K.: Water entry dynamics of spheres with heterogeneous wetting properties. Phys. Rev. Fluids 6(4), 044003 (2021)

    Article  Google Scholar 

  15. Watson, D.A., Stephen, J.L., Dickerson, A.K.: Jet amplification and cavity formation induced by penetrable fabrics in hydrophilic sphere entry. Phys. Fluids 30(8), 082109 (2018)

    Article  Google Scholar 

  16. Guleria, S.D., Dhar, A., Patil, D.V.: Experimental insights on the water entry of hydrophobic sphere. Phys. Fluids 33(10), 102109 (2021)

    Article  Google Scholar 

  17. Liu, D., He, Q., Evans, G.: Penetration behaviour of individual hydrophilic particle at a gas-liquid interface. Adv. Powder Technol. 21(4), 401–411 (2010)

    Article  Google Scholar 

  18. Wang, A., Song, Q., Ji, B., Yao, Q.: In-situ observation of hydrophobic micron particle impaction on liquid surface. Powder Technol. 311, 408–415 (2017)

    Article  Google Scholar 

  19. Wang, A., Song, Q., Yao, Q.: Study on inertial capture of particles by a droplet in a wide Reynolds number range. J. Aerosol. Sci. 93, 1–15 (2016)

    Article  Google Scholar 

  20. Verezub, O., Kaptay, G., Matsushita, T., Mukai, K.: Penetration dynamics of solid particles into liquids high-speed experimental results and modelling. In: Materials Science Forum, vol. 473, pp. 429–434. Trans Tech Publ (2005)

  21. Chen, H., Liu, H.-R., Lu, X.-Y., Ding, H.: Entrapping an impacting particle at a liquid-gas interface. J. Fluid Mech. 841, 1073–1084 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ji, B., Song, Q., Wang, A., Yao, Q.: Critical sinking of hydrophobic micron particles. Chem. Eng. Sci. 207, 17–29 (2019)

    Article  Google Scholar 

  23. Ji, B., Tang, Z., Song, Q.: Oblique impact dynamics of micron particles onto a liquid surface. Phys. Rev. Fluids 5(11), 114006 (2020)

    Article  Google Scholar 

  24. Ji, B., Song, Q., Yao, Q.: Impact of hydrophobic micron ellipsoids on liquid surfaces. J. Colloid Interface Sci. 532, 711–717 (2018)

    Article  Google Scholar 

  25. Zhu, S., Zhao, C., Haifeng, L., Chen, X.: Influence of surfactant on the penetration time of hydrophilic microparticles impacting into the gas–liquid interface at low impact velocities. Chem. Eng. Res. Des. 160, 383–394 (2020)

    Article  Google Scholar 

  26. Zhu, S.-J., Liu, R.-Z., Wang, T., Niu, Y.-J., Lu, H.-F., Chen, X.-L.: Penetration time of hydrophilic micron particles impacting into an unconfined planar gas–liquid interface. Chem. Eng. Sci. 193, 282–297 (2019)

    Article  Google Scholar 

  27. Ji, B., Song, Q., Shi, K., Liu, J., Yao, Q.: Oblique impact of microspheres on the surface of quiescent liquid. J. Fluid Mech. 900, A17 (2020)

  28. Dubrovsky, V., Podvysotsky, A., Shraiber, A.: Particle interaction in three-phase polydisperse flows. Int. J. Multiph. Flow 18(3), 337–352 (1992)

    Article  MATH  Google Scholar 

  29. Sechenyh, V., Amirfazli, A.: An experimental study for impact of a drop onto a particle in mid-air: the influence of particle wettability. J. Fluids Struct. 66, 282–292 (2016)

    Article  Google Scholar 

  30. Mitra, S., Doroodchi, E., Pareek, V., Joshi, J.B., Evans, G.M.: Collision behaviour of a smaller particle into a larger stationary droplet. Adv. Powder Technol. 26(1), 280–295 (2015)

    Article  Google Scholar 

  31. Zuo, Z., Wang, J., Huo, Y., Liu, H., Xu, R.: Particle motion induced by electrostatic force of a charged droplet. Environ. Eng. Sci. 33(9), 650–658 (2016)

    Article  Google Scholar 

  32. Bernardin, J.D., Mudawar, I., Walsh, C.B., Franses, E.I.: Contact angle temperature dependence for water droplets on practical aluminum surfaces. Int. J. Heat Mass Transf. 40(5), 1017–1033 (1997)

    Article  Google Scholar 

  33. Levedev, N.: Force acting on conducting sphere in the field of a parallel plate condenser. Sov. Phys. Tech. Phys. 7, 268 (1962)

    Google Scholar 

Download references

Acknowledgements

This work was supported by funds from the National Natural Science Foundation of China [51806087].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziwen Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Z., Jiang, P., Wang, L. et al. Eccentric impact of a submillimeter sphere on droplet surface under electric field. Acta Mech 234, 3547–3556 (2023). https://doi.org/10.1007/s00707-023-03574-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03574-7

Navigation