Skip to main content
Log in

Equivalent mechanical modeling and dynamic analysis of a large annular tensegrity structure

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Recent research on space technology applications has revealed a growing demand for deployable structures with large apertures. Numerous deployable structures that can form a single closed loop have been developed with a total weight limitation. The main purpose of this paper is to present an equivalent parameterized mechanical modeling method that is appropriate for an annular tensegrity structure, which is a tensioned structure that is intended for antenna applications with an aperture range of 30–100 m. In this model, the solutions of geometrically nonlinear problems for the cables and beams of the hoop are presented. Both the kinetic energy and potential energy are identified, which are represented by the velocity of the node component and strain component, respectively, of the beam members in the hoop unit of the parameterized hoop structure. Then, the behaviors of the eigenvalues and vibration modes for this tensegrity structure based on dynamic analysis are also investigated. Additionally, the effect on dynamic performance is demonstrated when the structural parameters are changed. The sensitivity of the structural parameters to dynamic characteristics is separately analyzed. The priority approaches to improving the overall stiffness of the structure when employing different hoop configurations are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Medzmariashvili, N., Medzmariashvili, E., Tsignadze, N., et al.: Possible options for jointly deploying a ring provided with V-fold bars and a flexible pre-stressed center. Ceas Space J. 5(3–4), 203–210 (2013)

    Article  Google Scholar 

  2. Liu, C., Shi, Y.: Comprehensive structural analysis and optimization of the electrostatic forming membrane reflector deployable antenna. Aerosp. Sci. Technol. 53, 267–279 (2016)

    Article  Google Scholar 

  3. Morterolle, S., Maurin, B., Dube, J., et al.: Modal behavior of a new large reflector conceptual design. Aerosp. Sci. Technol. 42, 74–79 (2015)

    Article  Google Scholar 

  4. Meguro, A., Harada, S., Watanabe, M.: Key technologies for high-accuracy large mesh antenna reflectors. Acta Astronaut. 53(11), 889–908 (2003)

    Article  Google Scholar 

  5. Qi, X., Li, S., Li, B., et al.: Design of a deployable ring mechanism using V-fold bars and scissor mechanisms. In: 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). IEEE (2016)

  6. Toledo, G.A., Monnier, D., Beahn, J., et al.: Scalable high compaction ratio mesh hoop column deployable reflector system. US09608333B1[P]

  7. Hollaway, L., Throne, A., et al.: Large space structures-their implications and requirements. Int. J. Space Struct. 6, 1–10 (1991)

    Article  Google Scholar 

  8. Meguro, A., et al.: In-orbit deployment characteristics of large deployable antenna reflector on board Engineering Test Satellite VIII. Acta Astron. 65, 1306–1316 (2009)

    Article  Google Scholar 

  9. Mitsugi, J., et al.: Deployment analysis of large space antenna using flexible multibody dynamics simulation. Acta Astron. 47, 19–26 (2000)

    Article  Google Scholar 

  10. Love, A.W.: Some highlights in reflector antenna development. Radio Sci. 11, 671–684 (1976)

    Article  Google Scholar 

  11. Takano, T.: Large deployable antennas-concepts and realization. In: Antennas and propagation society international symposium. IEEE (1999)

  12. Cao, W.A., Yang, D., Ding, H.: Topological structural design of umbrella-shaped deployable mechanisms based on new spatial closed-loop linkage units. J. Mech. Des. 140(6), 062302 (2018)

    Article  Google Scholar 

  13. Taibin, H.U.: Movement reliability of rotation joint of umbrella antenna. Chin. J. Space Sci. 25, 552–557 (2005)

    Article  Google Scholar 

  14. Puig, L., et al.: A review on large deployable structures for astrophysics missions. Acta Astron. 67, 12–26 (2010)

    Article  Google Scholar 

  15. Yl, A., Jw, A., Lu, D.B.: Structural design and dynamic analysis of new ultra-large planar deployable antennas in space with locking systems. Aerosp. Sci. Technol. 106, 106082 (2020)

    Article  Google Scholar 

  16. Sun, Z., Zhang, Y., Yang, D.: Structural design, analysis, and experimental verification of an H-style deployable mechanism for large space-borne mesh antennas. Acta Astron. 178, 481–498 (2021)

    Article  Google Scholar 

  17. Datashvili, L.: Foldability of hinged-rod systems applicable to deployable space structures. CEAS Space J. 5(3–4), 157–168 (2013)

    Article  Google Scholar 

  18. Yuan, P., He, B., Zhang, L., et al.: Pretension design of cable-network antennas considering the deformation of the supporting truss: a double-loop iterative approach. Eng. Struct. 186, 399–409 (2019)

    Article  Google Scholar 

  19. Moshtaghzadeh, M., Izadpanahi, E., Mardanpour, P.: Stability analysis of an origami helical antenna using geometrically exact fully intrinsic nonlinear composite beam theory. Eng. Struct. 234(5), 111894 (2021)

    Article  Google Scholar 

  20. Tserodze, S., Prowald, J.S., Gogilashvili, V., et al.: Transformable reflector structure with V-folding bars. CEAS Space J. 8(4), 291–301 (2016)

    Article  Google Scholar 

  21. Zheng, F., Chen, M., He, J.: Analyses of a new simplified large deployable reflector structure. In: 2013 IEEE Aerospace Conference, Big Sky, MT, USA, 1–7 (2013)

  22. Ozawa, S., Tsujihata, A.: Lightweight design of 30 m class large deployable reflector for communication satellites. In: 52nd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference. 04 April-07 April 2011, Denver, Colorado

  23. Liu, R., Guo, H., Liu, R., et al.: Design and form finding of cable net for a large cable-rib tension antenna with flexible deployable structures. Eng. Struct. 199, 109662.1-109662.11 (2019)

    Article  Google Scholar 

  24. Kan, Z., Li, F., Peng, H., et al.: Sliding cable modeling: a nonlinear complementarity function based framework. Mech. Syst. Signal Process. 146, 107021 (2021)

    Article  Google Scholar 

  25. Kan, Z., Li, F., Song, N., et al.: Novel nonlinear complementarity function approach for mechanical analysis of tensegrity structures. AIAA J. 59(4), 1483–1495 (2021)

    Article  Google Scholar 

  26. Peng, H., Li, F., Kan, Z., et al.: Symplectic instantaneous optimal control of deployable structures driven by sliding cable actuators. J. Guid. Control. Dyn. 43(6), 1114–1128 (2020)

    Article  Google Scholar 

  27. Campbell, T.G., Butler, D.H., Belvin, K., et al.: Development of the 15-meter hoop-column antenna system: N85–23813 14–15 [R]. Washington: NASA 167–212 (1985)

  28. Noor, A.K., Russell, W.C.: Anisotropic continuum models for beamlike lattice trusses. Comput. Methods Appl. Mech. Eng. 57(3), 257–277 (1986)

    Article  MATH  Google Scholar 

  29. Noor, A.K., Nemeth, M.P.: Analysis of spatial beamlike lattices with rigid joints. Comput. Methods Appl. Mech. Eng. 24(1), 35–59 (1980)

    Article  MATH  Google Scholar 

  30. Salehian, A., Cliff, E.M., Inman, D.J.: Continuum modeling of an innovative space-based radar antenna truss. J. Aerosp. Eng. 19(4), 227–240 (2006)

    Article  Google Scholar 

  31. Ashwear, N., Tamadapu, G., Eriksson, A.: Optimization of modular tensegrity structures for high stiffness and frequency separation requirements. Int. J. Solids Struct. 80, 297–309 (2016)

    Article  Google Scholar 

  32. Chen, Y., Sun, Q., Feng, J.: Stiffness degradation of prestressed cable-strut structures observed from variations of lower frequencies. Acta Mech. 229, 3319–3332 (2018)

    Article  MathSciNet  Google Scholar 

  33. Grandhi, R.: Structural optimization with frequency constraints-a review. AIAA J. 31, 2296–2303 (1993)

    Article  MATH  Google Scholar 

  34. Bathe, K.J.: The subspace iteration method-revisited. Comput. Struct. 126, 177–183 (2013)

    Article  Google Scholar 

  35. Sullivan, M.R.: LSST (Hoop/Column) Maypole Antenna Development Program[R], phase 1, part 1. NASA CR-3558 (1982)

  36. Bishara, A., Hittner, J.: Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol. Methods 17(3), 399–417 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Numbers 52175010 and 52005123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Chuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hongyue, Z., Chuang, S., Hongwei, G. et al. Equivalent mechanical modeling and dynamic analysis of a large annular tensegrity structure. Acta Mech 234, 3623–3647 (2023). https://doi.org/10.1007/s00707-023-03569-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03569-4

Navigation