Skip to main content
Log in

Axial–torsional coupled static behavior of inhomogeneous pretwisted cantilever beams

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study investigates the axial–torsional coupled static behavior of inhomogeneous pretwisted cantilever beams. The problem is formulated using the Saint–Venant torsion assumption, and warping-related stiffness coefficients are reexpressed in terms of Prandtl’s stress function. It is assumed that material distribution is parabolic in the thickness direction. Governing equations are derived using the minimum potential energy approach. To verify the approach used to compute warping-related stiffness coefficients in the inhomogeneous case, several validation studies are performed by comparing results with those obtained from the finite element analyses and multi-material beam approach. The effect of the material distribution parameter on these coefficients is examined. Then, for tip tensile force and tip torsional moment scenarios, it is shown that computed structural responses are in good agreement with those obtained from commercial finite element software. Finally, the effect of the material distribution parameter on the tip displacements is analyzed for these two loading scenarios. It is shown that in addition to geometric parameters, inhomogeneity can also affect the axial–torsional coupled static response of the pretwisted beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rosen, A.: Structural and dynamic behavior of pretwisted rods and beams. Appl. Mech. Rev. 44, 483–515 (1991). https://doi.org/10.1115/1.3119490

    Article  Google Scholar 

  2. Wagner, H., Pretschner, W.: Torsion and Buckling of Open Sections. (1936)

  3. Chu, C.: The effect of initial twist on the torsional rigidity of thin prismatical bars and tubular members. In: Proceedings of the 1st U.S. National Congress of Applied Mechanics. pp. 265–269 (1951)

  4. Houbolt, J.C., Brooks, G.W.: Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades (1958)

  5. Kaza, K.R.V., Kielb, R.E.: Effects of warping and pretwist on torsional vibration of rotating beams. J. Appl. Mech. Trans. ASME 51, 913–920 (1984). https://doi.org/10.1115/1.3167746

    Article  Google Scholar 

  6. McGee, O.G.: Influence of warping-pretwist coupling on the torsional vibration of centrifugally-stressed cantilevers with thin-walled open-profiles. Comput. Struct. 42, 175–195 (1992). https://doi.org/10.1016/0045-7949(92)90203-C

    Article  MATH  Google Scholar 

  7. McGee, O.G.: Closed-form effects of warping and pretwist on the torsional vibration of thin-walled open-profile cantilevers. Thin-Walled Struct. 13, 217–244 (1992). https://doi.org/10.1016/0263-8231(92)90042-U

    Article  Google Scholar 

  8. Librescu, L., Oh, S.Y., Song, O., Kang, H.S.: Dynamics of advanced rotating blades made of functionally graded materials and operating in a high-temperature field. J. Eng. Math. 61, 1–16 (2008). https://doi.org/10.1007/s10665-007-9155-5

    Article  MATH  Google Scholar 

  9. Rosen, A.: Effect of initial twist on the torsional rigidity of beams - another point of view. J. Appl. Mech. 47, 389–392 (1980). https://doi.org/10.1115/1.3153674

    Article  MATH  Google Scholar 

  10. Liu, K.C., Friend, J., Yeo, L.: The axial-torsional vibration of pretwisted beams. J. Sound Vib. 321, 115–136 (2009). https://doi.org/10.1016/j.jsv.2008.09.016

    Article  Google Scholar 

  11. Biot, M.A.: Increase of torsional stiffness of a prismatical bar due to axial tension. J. Appl. Phys. 10, 860–864 (1939). https://doi.org/10.1063/1.1707272

    Article  MathSciNet  MATH  Google Scholar 

  12. Washizu, K.: Some considerations on a naturally curved and twisted slender beam. J. Math. Phys. 43, 111–116 (1964). https://doi.org/10.1002/sapm1964431111

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauchau, O.A., Hong, C.H.: Large displacement analysis of naturally curved and twisted composite beams. AIAA J. 25, 1469–1475 (1987). https://doi.org/10.2514/3.9806

    Article  MATH  Google Scholar 

  14. Hodges, D.H.: Torsion of pretwisted beams due to axial loading. J. Appl. Mech. 47, 393–397 (1980). https://doi.org/10.1115/1.3153675

    Article  MATH  Google Scholar 

  15. Librescu, L., Oh, S.Y., Song, O.: Thin-walled beams made of functionally graded materials and operating in a high temperature environment: vibration and stability. J. Therm. Stress. 28, 649–712 (2005). https://doi.org/10.1080/01495730590934038

    Article  Google Scholar 

  16. Krenk, S.: The torsion-extension coupling in pretwisted elastic beams. Int. J. Solids Struct. 19, 67–72 (1983). https://doi.org/10.1016/0020-7683(83)90038-0

    Article  MATH  Google Scholar 

  17. Goodier, J.N., Griffin, D.S.: Elastic bending of pretwisted bars. Int. J. Solids Struct. 5, 1231–1245 (1969). https://doi.org/10.1016/0020-7683(69)90056-0

    Article  MATH  Google Scholar 

  18. Rosen, A.: Theoretical and experimental investigation of the nonlinear torsion and extension of initially twisted bars. J. Appl. Mech. Trans. ASME 50, 321–326 (1983). https://doi.org/10.1115/1.3167039

    Article  MATH  Google Scholar 

  19. Krenk, S.: A linear theory for pretwisted elastic beams. J. Appl. Mech. Trans. ASME 50, 137–142 (1983). https://doi.org/10.1115/1.3166980

    Article  MATH  Google Scholar 

  20. Giannakopoulos, A.E., Aravas, N., Papageorgopoulou, A., Vardoulakis, I.: A structural gradient theory of torsion, the effects of pretwist, and the tension of pre-twisted DNA. Int. J. Solids Struct. 50, 3922–3933 (2013). https://doi.org/10.1016/j.ijsolstr.2013.08.003

    Article  Google Scholar 

  21. Kordolemis, A., Aravas, N., Giannakopoulos, A.E.: Pretwisted beams in axial tension and torsion: analogy with dipolar gradient elasticity and applications to textile materials. J. Eng. Mech. 141, 04015036 (2015). https://doi.org/10.1061/(asce)em.1943-7889.0000917

    Article  Google Scholar 

  22. Kordolemis, A., Giannakopoulos, A.E., Aravas, N.: Pretwisted beam subjected to thermal loads: a gradient thermoelastic analogue. J. Therm. Stress. 40, 1231–1253 (2017). https://doi.org/10.1080/01495739.2017.1308810

    Article  Google Scholar 

  23. Aravas, N., Papadioti, I.: The problem of tension-torsion of pretwisted elastic beams revisited. J. Eng. Mech. 148, 1–22 (2022). https://doi.org/10.1061/(asce)em.1943-7889.0002037

    Article  Google Scholar 

  24. Lekhnitskii, S.G.: Torsion of anisotropic and non-homogeneous beams. Fiz. Mat. Lit, Moscow (1971)

    Google Scholar 

  25. Kolchin, G.B.: Calculation of Structural Elements Made of Elastic Inhomogeneous Materials. Kartya Moldovenyaske, Kishinev (1971)

  26. Lomakin, V.A.: Theory of elasticity of inhomogeneous body. Moscow University Publishing House, Moscow (1976)

    Google Scholar 

  27. Rooney, F.J., Ferrari, M.: Torsion and flexure of inhomogeneous elements. Compos. Eng. 5, 901–911 (1995). https://doi.org/10.1016/0961-9526(95)00043-M

    Article  Google Scholar 

  28. Horgan, C.O., Chan, A.M.: Torsion of functionally graded isotropic linearly elastic bars. J. Elast. 52, 181–199 (1998). https://doi.org/10.1023/A:1007544011803

    Article  MathSciNet  MATH  Google Scholar 

  29. Eishinskii, A.M., Adlucky, V.J., Tsadikova, E.T.: About a torsional problem for the orthotropic non-homogeneous rod of rectangular cross-section. Tech. Mech. 19, 45–48 (1999)

    Google Scholar 

  30. Batra, R.C.: Torsion of a functionally graded cylinder. AIAA J. 44, 1363–1365 (2006). https://doi.org/10.2514/1.19555

    Article  Google Scholar 

  31. Arghavan, S., Hematiyan, M.R.: Torsion of functionally graded hollow tubes. Eur. J. Mech. A/Solids. 28, 551–559 (2009). https://doi.org/10.1016/j.euromechsol.2008.07.009

    Article  MATH  Google Scholar 

  32. Ecsedi, I.: Some analytical solutions for Saint-Venant torsion of non-homogeneous cylindrical bars. Eur. J. Mech. A/Solids. 28, 985–990 (2009). https://doi.org/10.1016/j.euromechsol.2009.03.010

    Article  MATH  Google Scholar 

  33. Ecsedi, I., Baksa, A.: Saint-Venant torsion of non-homogeneous orthotropic circular cylinder. Arch. Appl. Mech. 90, 815–827 (2020). https://doi.org/10.1007/s00419-019-01640-y

    Article  Google Scholar 

  34. Nikmehr, O., Lashkarbolok, M.: A numerical investigation on the torsional rigidity of bars with functionally graded material (FGM) cross sections weakened by Cracks. Iran. J. Sci. Technol. Trans. Civil Eng. 43(2), 117–123 (2019). https://doi.org/10.1007/s40996-018-0147-7

    Article  Google Scholar 

  35. Galuppi, L., Royer-Carfagni, G.: Membrane analogy for multi-material bars under torsion. Proc. R. Soc. A Math. Phys. Eng. Sci. 475(2225), 20190124 (2019). https://doi.org/10.1098/rspa.2019.0124

    Article  MATH  Google Scholar 

  36. Katsikadelis, J.T., Tsiatas, G.C.: The boundary element method for the torsion problem of non-homogeneous anisotropic bars. In: Proceedings of the 3rd National Congress on Computational Mechanics. pp. 517–526. Volos, Greece (1999)

  37. Katsikadelis, J.T., Tsiatas, G.C.: Saint-Venant torsion of non-homogeneous anisotropic bars. J. Appl. Comput. Mech. 2, 42–53 (2016). https://doi.org/10.22055/jacm.2016.12270

    Article  Google Scholar 

  38. Tsiatas, G.C., Babouskos, N.G.: Elastic-plastic analysis of functionally graded bars under torsional loading. Compos. Struct. 176, 254–267 (2017). https://doi.org/10.1016/j.compstruct.2017.05.044

    Article  Google Scholar 

  39. Rongqiao, X., Jiansheng, H., Weiqiu, C.: Saint-Venant torsion of orthotropic bars with inhomogeneous rectangular cross section. Compos. Struct. 92, 1449–1457 (2010). https://doi.org/10.1016/j.compstruct.2009.10.042

    Article  Google Scholar 

  40. Yoon, K., Lee, P.S., Kim, D.N.: Geometrically nonlinear finite element analysis of functionally graded 3D beams considering warping effects. Compos. Struct. 132, 1231–1247 (2015). https://doi.org/10.1016/j.compstruct.2015.07.024

    Article  Google Scholar 

  41. Kugler, S., Fotiu, P., Murín, J.: On the access to transverse shear stiffnesses and to stiffness quantities for non-uniform warping torsion in FGM beam structures. Stroj. Cas. 69, 27–56 (2019). https://doi.org/10.2478/scjme-2019-0016

    Article  Google Scholar 

  42. Migliaccio, G.: Analytical evaluation of stresses and strains in inhomogeneous non-prismatic beams undergoing large deflections. Acta Mech. 233, 2815–2827 (2022). https://doi.org/10.1007/s00707-022-03247-x

    Article  MathSciNet  MATH  Google Scholar 

  43. Balhaddad, A.S., Onipede, D.: Three-dimensional free vibration of pretwisted beams. AIAA J. 36, 1524–1528 (1998). https://doi.org/10.2514/2.547

    Article  Google Scholar 

  44. Slaughter, W.S.: The Linearized Theory of Elasticity. Birkhäuser Boston, Boston, MA (2002). https://doi.org/10.1007/978-1-4612-0093-2

    Book  MATH  Google Scholar 

  45. Young, W.C.: Roark’s Formulas for Stress and Strain. McGraw-Hill, New York (2002)

    Google Scholar 

  46. Wolfram Research, I.: Mathematica, (2020)

  47. García, A.C., Dauchez, N., de Buot l’Epine, Y., Lefebvre, G.: Localized modes prediction in a membrane with non-uniform tension from the quasi-static measurement of its localization landscape. J. Sound Vib. 511, 116272 (2021). https://doi.org/10.1016/j.jsv.2021.116272

    Article  Google Scholar 

  48. Rousseau, C.E., Tippur, H.V.: Compositionally graded materials with cracks normal to the elastic gradient. Acta Mater. 48, 4021–4033 (2000). https://doi.org/10.1016/S1359-6454(00)00202-0

    Article  Google Scholar 

  49. Tilbrook, M.T., Moon, R.J., Hoffman, M.: Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng. Fract. Mech. 72, 2444–2467 (2005). https://doi.org/10.1016/j.engfracmech.2005.04.001

    Article  Google Scholar 

Download references

Acknowledgements

The author, Ömer Ekim Genel, is supported by the Scientific and Technological Research Council of Turkey (TUBITAK) 2211-A National Ph.D. Scholarship Programme and would like to thank them for their support for his Ph.D. studies.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors have no competing interests to declare that are relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Ekim Genel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genel, Ö.E., Tüfekci, E. Axial–torsional coupled static behavior of inhomogeneous pretwisted cantilever beams. Acta Mech 234, 3421–3436 (2023). https://doi.org/10.1007/s00707-023-03561-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03561-y

Navigation